calculus

for the series is absolutely convergent and convergent

the series from 1 to infinity of (x^3)/(5^x)

i did the ration test and get absolutely convergent and convergent

is this correct?

  1. 👍
  2. 👎
  3. 👁
  1. Yes

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    By recognizing each series below as a Taylor series evaluated at a particular value of x, find the sum of each convergent series. A) 1+5 + (5^2)/(2!)+(5^3)/(3!)+(5^4)/(4!)+...+ (5^k)/(k!)+...= B)

  2. Calculus

    Determine whether the integral is divergent or convergent. If it is convergent, evaluate it. If it diverges to infinity, state your answer as INF. If it diverges to negative infinity, state your answer as MINF. If it diverges

  3. calculus

    determine if the series is absolutely convergent and convergent the sum from n=1 to infinity of sin(n^2)/n^2 what series test should I use and how? the ratio test?

  4. Integral Calculus

    For what values of p is this series convergent? (summation from n = 1 to infinity) of ((-1)^(n-1))/(n^(p + 2)) A. p >= -2 B. p =/= -2 C. p > -2 D. for all p E. p > 0 You have to use the Alternating Series Test. I've already tried

  1. Calculus

    Use the Integral test to determine whether the series is convergent or divergent. infinity "series symbol" n=1 (ne^(n"pi")) Note: I don't know how to solve or work out so show all your work. And give the answer in EXACT FORM

  2. Calculus - Alternating Series Test

    Determine whether the infinite series, sigma(((-1)^(n+1))/n)^2 converges or diverges. My professor gave these in a problem set after he taught the alternating series test. Simplying the series we get, sigma(((-1)^(n+1))/n)^2

  3. Calculus

    Determine whether the integral is divergent or convergent. If it is convergent, evaluate it and enter that value as your answer. If it diverges to infinity, state your answer as "INF" (without the quotation marks). If it diverges

  4. calculus

    Use the ratio test to determine whether the series is convergent or divergent. 1/2 + 2^2/2^2 + 3^2/2^3 + 4^2/2^4 + ...

  1. Calculus - ratio test

    infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n->infinity) | [(e^n+1)/((n+1)!)] / [(e^n)/(n!)] | = lim (n->infinity) | [(e^n+1)/((n+1)!)] * [(n!)/(e^n)] | = lim (n->infinity) |

  2. Calc 2

    Determine whether the series is convergent or divergent series symbol n=1 to infinity (n^2/(e^(3n))

  3. calculus

    Another problem: determine whether the series is convergent if so find sum it is the sum from k=1 to infinity of ((-1)^k)/(3^(k+1)) i found this series to be geometric where a=-1/9 and r=1/3 my answer was converges to 1/6

  4. Calculus

    Determine whether the series from 0 to infinity of cos(nπ)/(n + 3) converges conditionally or absolutely. A. The series diverges. B. The series converges conditionally but not absolutely. C. The series converges absolutely but

You can view more similar questions or ask a new question.