# trig

Prove the identity
sin(3 pi /2 + x) + sin(3pi/2 -x) = -2cosx

1. 👍
2. 👎
3. 👁
1. L.S = (sin 3pi/2)(cos x) + cos(3pi/2)(sin x) + sin(3pi/2)cos x) + cos(3pi/2)(sin x)
= -cos x + (-cos x), because sin(3pi/2)=-1 and cos(3pi/2) = 0
= -2cos x
= R.S.

1. 👍
2. 👎

## Similar Questions

1. ### Math

Prove that sin 13pi/3.sin 8pi/3+cos 2pi/3.sin 5pi /6=1/2.

2. ### trig

verify the identity: sin(x+y)-sin(x-y)=2cosx siny

3. ### CALCULUS LIMITS

What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of

4. ### Math:)

Explain why sin^-1[sin(3pi/4)] does not = 3pi/4 when y=sin(x) and y=sin^-1(x) are inverses. Any help on this question is greatly appreciated. Thank you!

1. ### Trigonometry

Solve the equation for solutions in the interval 0

2. ### Precalculus

sin^2(2x)=2sinxcosx. Find all solutions to each equation in the interval [0, 2pi) So I started off changing 2sinxcosx = sin(2x), and my equation ended as sin^2(2x) = sin(2x). I subtracted sin(2x) by both sides and factored out

3. ### MathsSs triG

Consider sin(x-360)sin(90-x)tan(-x)/cos(90+x) 1.A.SIMPLIFY sin(x-360)sin(90-x)tan(-x)/cos(90+x) to a single trigonometric ratio B.hence or otherwise without using a calculator,solve for X if 0

4. ### Precalculus with Trigonometry

Prove or disprove the following identity: (sin(10x))/(sin(x)+sin(9x)) = (cos(5x))/(cos4x))

1. ### precalc

prove the identity: cos^4 - sin^4 = cos^2 - sin^2 (cos^2 + sin^2)(cos^2 - sin^2) cos^2 + sin^2 = 1 cos^2 - sin^2 = cos^2 - sin^2 is this correct?

2. ### Math Answer Check

1. Find the exact value of the expression. cos pi/16 * cos 3pi/16 - sin pi/16 * sin 3pi/16 My ans: sqrt2/2 2. Find the exact value of the sin of the angle. 17pi/12 = 7pi/6 + pi/4 My ans: (sqrt2 - sqrt6)/4

3. ### precalc

use power reducing identities to prove the identity sin^4x=1/8(3-4cos2x+cos4x) cos^3x=(1/2cosx) (1+cos2x) thanks :)

4. ### Trig

Given: cos u = 3/5; 0 < u < pi/2 cos v = 5/13; 3pi/2 < v < 2pi Find: sin (v + u) cos (v - u) tan (v + u) First compute or list the cosine and sine of both u and v. Then use the combination rules sin (v + u) = sin u cos v + cos v