# Physics

To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end of the string passes over a pulley and is connected to a suspended mass M, as shown.
The value of M is such that the standing wave pattern has eight loops “anti-nodes”. The length of the string from the tuning fork to the point where the string touches the top of the pulley is 1.1 m. The linear density of the string is 8×10−5 kg/m, and remains constant throughout the experiment.
The acceleration to gravity is 9.8m/s^2

Determine the speed of the transverse wave along the string. Answer in units of m/s.

The speed of waves along the string in- creases with increasing tension in the string.
In order to double the number of loops in the standing wave pattern (so that there are 16 loops in total), how much suspended mass should we use? Answer in units of kg.

If a point on the string at an antinode travels a total distance of 9 cm during one complete cycle, what is the amplitude of the standing wave?

1. 👍
2. 👎
3. 👁
1. 2.25

1. 👍
2. 👎

## Similar Questions

1. ### Physics

A stretched string fixed at both ends is 2.0 m long. What are the three wavelengths that will produce standing waves on this string? Name at least one wavelength that would not produce a standing wave pattern, and explain your

2. ### Physics

A tuning fork is used to tune a piano key. The tuning fork has a set frequency of 455 Hz. The beat frequency is measured at 21 Hz. What are the two possible frequencies the piano key could be to create that beat frequency? 501 Hz

3. ### Physics

The speed of sound in a classroom is 343m/s. A) A tuning fork of frequency 512Hz is struck. What length of open air tube is required to create a resonant sound at the 1st harmonic? wavelength=v/f=343/512=0.67m

4. ### Physics 11

Waves travelling along a string have a wavelength of 2.4m. When the waves reach the fixed end of the string, they are reflected to produce a standing wave pattern. How far from the end are the first 2 antinodes? I know that each

1. ### physics

An open vertical tube is filled with water and a tuning fork vibrates over the top near the open end. As the water level is lowered in the tube, the first resonance is heard when the water level is at 31 cm from the top of the

2. ### physics

A sphere of mass M is supported by a string that passes over a pulley at the end of a horizontal rod of length L . The string makes an angle θ with the rod. The fundamental frequency of the standing waves in the portion of the

3. ### Physics 11

Waves traveling along a string have a wavelength of 2.4m. When the waves reach the fixed end of the string, they are reflected to produce a standing wave pattern. How far from the end are the first 2 antinodes? I feel like I don't

4. ### PHYSICS

A tuning fork is set into vibration above a vertical open tube filled with water. The water level is allowed to drop slowly. As it does so, the air in the tube above the water level is heard to resonate with the tuning fork when

1. ### physics

consider the following: A point on the tip of a tuning fork vibrates in harmonic motion described by the equation d=10sin(ωt). 1. ω for a tuning fork that has a frequency of 535 vibrations per second. (I don't understand this

2. ### science

1. A violin string is oscillating at a frequency of 880 Hz (1 Hz = 1 full cycle / second) in its 2nd harmonic. What wold be the frequency of the fundamental vibrational mode? 2. Describe how you would go about finding the

3. ### Physics

A vertical tube with a tap at the base is filled with water, and a tuning fork vibrates over its mouth. As the water level is lowered in the tube, resonance is heard when the water level has dropped 18 cm, and again after 54 cm of

4. ### Physics

To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end of the string passes over a pulley and is connected to a suspended mass M, as shown. The value of M is such that