Calculus

An open top box is made by cutting congruent squares from the corners of a 12 inch by 9 inch sheet of cardboard and then folding the sides up to create the box. What are the dimensions of the box which contains the largest volume?

  1. 👍
  2. 👎
  3. 👁

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    An open box of maximum volume is to be made from a square piece of cardboard, 24 inches on each side, by cutting equal squares from the corners and turning up the sides to make the box. (a) Express the volume V of the box as a

  2. calculus

    an open box is to be made from a piece of metal 16 by 30 inches by cutting out squares of equal size from the corners and bending up the sides. what size should be cut out to create a box with the greatest volume? what is the

  3. Calculus

    A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if A = 7

  4. Calculus

    An open box is formed from a piece of cardboard 12 inches square by cutting equal squares out of the corners and turning up the sides, find the dimensions of the largest box that can be made in this way.

  1. college algebra

    An open box is made from a square piece of cardboard 20 inches on a side by cutting identical squares from the corners and turning up the sides.(a) Express the volume of the box, V , as a function of the length of the side of the

  2. calculus

    7. A cardboard box manufacturer wishes to make open boxes from rectangular pieces of cardboard with dimensions 40 cm by 60 cm by cutting equal squares from the four corners and turning up the sides. Find the length of the side of

  3. Calculus

    a sheet of cardboard 14 inches square is used to make an open box by cutting squares of equal size from the four corners and folding up the sides. What size squares should be cut from the corners to obtain a box with largest

  4. Math

    You want to create a box without a top from an 8.5 in by 11 in sheet of paper. You will make the box by cutting squares of equal size from the four corners of the sheet of paper. If you make the box with the maximum possible

  1. pre-calculus

    An open box is made from a square piece of material 36 inches on a side by cutting equal squares from the corners and turning up the sides. Use your calculator to find the maximum volume this box can hold. I got the equation

  2. Calculus

    A box with an open top is to be made from a square piece of cardboard by cutting equal squares from the corners and turning up the sides. If the piece of cardboard measures 12 cm on the side, find the size of the squares that must

  3. Calculus

    A square sheet of cardboard with a side 16 inches is used to make an open box by cutting squares of equal size from the four corners and folding up the sides. What size squares should be cut from the corners to obtain a box with

  4. calculus

    An open box is to be made from a 21 ft by 56 ft rectangular piece of sheet metal by cutting out squares of equal size from the four corners and bending up the sides. Find the maximum volume that the box can have.

You can view more similar questions or ask a new question.