science: physics

A 2.0 kg breadbox on a frictionless incline of angle is connected, by a cord that runs over a pulley, to a light spring of spring constant , as shown in Fig. 8-42. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when it has moved 10 cm down the incline? (b) How far down the incline from its point of release does the box slide before momentarily stopping, and what are the (c) magnitude and (d) direction (up or down the incline) of the box’s acceleration at the instant the box momentarily stops?

THANKS!

  1. 👍
  2. 👎
  3. 👁
  1. You provide no value for the spring constant (k?) not the angle (A?). You also do not provide the figure 8-42 mentioned. Without this information, we cannot helprovide numerical answers. An energy method can be used for these questions. The loss of potential energy by the box as it falls down the incline equals the gain in kinetic energy by amount X plus the energy stored in the spring.
    m g X sin A = (1/2) kX^2 + (1/2) M V^2.
    For (b), use the same equation to solve for X when V = 0. . For (c) and (d), solve for X at the two points where V - 0, and use F = kX and a = F/M to get the acceleration (a) there.

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    Two boxes are connected by a weightless cord running over a very light frictionless pulley as shown in the figure. Box A, of mass 8.0 kg, is initially at rest on the top of the table. The coefficient of kinetic friction between

  2. Physics

    A block of mass 5.53 kg lies on a frictionless horizontal surface. The block is connected by a cord passing a. over a pulley to another block of mass 2.25 kg which hangs in the air. Assume the cord to be light (massless and

  3. physics

    A block of mass m1=3.70kg on a frictionless plane inclined at angle 30 deg is connected by a cord over a massless, frictionless pulley to a second block mass m2= 2.30kg. What is... a) The magnitude of the acceleration of each

  4. Physics

    Two objects are connected by a light string that passes over a frictionless pulley, and two objects are on either side of the string. There is a hanging object off the vertical side of the incline weighing 10.0 kg. The 3.50 kg

  1. Physics

    Two packing crates of masses m1 = 10.0 kg and m2 = 3.50 kg are connected by a light string that passes over a frictionless pulley as in Figure P4.26. The 3.50 kg crate lies on a smooth incline of angle 37.0°. Find the

  2. physics

    Two blocks connected by a cord passing over a small, frictionless pulley rest on frictionless planes: a) What is the acceleration of the blocks? b) What is the tension in the cord? c) Which way will the system move when the blocks

  3. Physics - Newtons laws

    A block (mass m1 = 8kg) is moving on an inclined plane, coefficient of kinetic friction of 0.45, whose angle is 30degrees. This block is connected to a second block (mass m2 = 22kg) by a cord that passes over a small frictionless

  4. Physics

    The figure below shows a box of dirty money (mass m1 = 4.0 kg) on a frictionless plane inclined at angle θ1 = 35°. The box is connected via a cord of negligible mass to a box of laundered money (mass m2 = 2.0 kg) on a

  1. Physics

    Two identical masses are connected by a (massless, stretchless) string across a (massless, frictionless) pulley. The mass on the right is held so that the string connected to it is horizontal. Everything is initially at rest; the

  2. Physics

    A uniform solid sphere rolls down an incline. (a) What must be the incline angle (deg) if the linear acceleration of the center of the sphere is to have a magnitude of 0.23g? (b) If a frictionless block were to slide down the

  3. physics

    A block of mass 3kg which is on a smooth inclined plane making an angle of 30° to the horizontal is connected by a cord passing over a light frictionless pulley to a second block of mass 2kg hanging vertically. What is the

  4. Physics

    A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 200 N/m. The spring is

You can view more similar questions or ask a new question.