# Physics help

A 0.50-kg block rests on a horizontal, frictionless surface, it is pressed against a light spring having a spring constant of k = 800 N/m, with an initial compression of 2.0 cm. To what height h does the block rise when moving up the incline? what would be the h if the coefficient of the kinetic friction is 0.1 and the angle is 15 degrees ?

1. 👍 0
2. 👎 0
3. 👁 374
1. What incline? You said it was on a horizontal surface. Is there a transition from horizontal to 15 degree incline?

I suggest an energy approach the problem

1. 👍 0
2. 👎 0

## Similar Questions

1. ### Physics

A block of mass m = 2.00 kg rests on the left edge of a block of mass M = 8.00 kg. The coefficient of kinetic friction between the two blocks is 0.300, and the surface on which the 8.00- kg block rests is frictionless. A constant

2. ### Physics

A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block

3. ### physics again it didnt work.

A moving 1.60 kg block collides with a horizontal spring whose spring constant is 295 N/m. The block compresses the spring a maximum distance of 3.50 cm from its rest position. The coefficient of kinetic friction between the block

4. ### physics

a rifle bullet of mass 8.0g strikes and embeds itself in a block of mass 0.992kg that rests on a frictionless horizontal surface and is attached to a coil spring. the impact compresses the spring 15.0cm. calibration of the spring

1. ### physics

[20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a

2. ### physics

a 4.0-kg block is moving at 5.0 m/s along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of 0.68 m. )

3. ### physics

A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. You

4. ### physics

A light spring with force constant 3.85 N/m is compressed by 5.00 cm as it is held between a 0.250 kg block on the left and a 0.500 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each

1. ### Physics

A 500 g block is released from rest and slides down a frictionless track that begins h = 1.70 m above the horizontal, as shown in Figure P13.56. At the bottom of the track, where the surface is horizontal, the block strikes and

2. ### Physics

A 0.500 kg block is sitting on a horizontal, frictionless surface. The block is connected to a horizontal spring with a force constant of 124 N/m. The other end of the horizontal spring rests against a wall. When a 100.0 g arrow

3. ### Physics

The horizontal surface on which the block slides is frictionless. The speed of the block before it touch the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 0.15 m? The spring

4. ### Physics

A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of