calculus
 👍 1
 👎 0
 👁 626

 👍 1
 👎 0
Respond to this Question
Similar Questions

d/dx
d/dx( ln sin(pi/x) ) = ? Thanks. If those are absolute value signs, the derivative will not exist when sin (pi/x) = 0, because of the sign change that occurs there. Assume sin (pi/x) > 0 Let u(x) = pi/x and v(x) = sin x, and use

calculus
Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(sin x)  (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

Trig
Find sin(s+t) and (st) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(1/5)Sin(3/5) = 0.389418 Sin(st) =sin(s)cos(t)  cos(s)sin(t) =sin(3/5)cos(1/5) 

calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

Trig
4. Asked to simplify the expression sin(180−è), Rory volunteered the following solution: sin(180−è) = sin 180−sin è, and, because sin 180 is zero, it follows that sin(180−è) is the same as −sin è. Is this answer

Calculus
Which of the following definite integrals could be used to calculate the total area bounded by the graph of y = sin(x), the xaxis, x = 0, and x = π a) ∫ from π to 0 sin(x)dx b) ∫ from π to 0 sin(x)dx c) 2∫ from π to 0

Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

Calculus AP
Evaluate the integral interval from [0 to pi] t sin(3t)dt Use integration by parts u=t and dv=sin(3t)dt. then du=dt and v=cos(3t)/3 here is my problem but Im having problem to solve with pi. ∫t sin(3t)dt = tcos(3t)/3 

Calculus
1. Find the domain for the particular solution to the differential equation dy/dx=3y/x, with initial condition y(1) = 1. A. x > 0 B. x < 0 C. x ≠ 0 D. All real numbers 2. Use geometry to evaluate the integral from negative 2 to

Math  Linear Approximation
a) Find a linear approximation of y=sinx at x=pi/6 b) use part (a) to approximate sin(61pi/360) and sin(59pi/360) I just really have no idea how to approach this problem. I know the formula is y=f(a)+f'(a)(xa). Does that mean it

CALCULUS LIMITS
What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of

Calculus
I am trying to find the integral of e^(6x)sin(7x). Apparently, the answer is (6e^(6x)sin(7x)  7e^(6x)cos(7x))/85) + C and achieving the answer is mostly understandable since it involves integrating the function in parts... that
You can view more similar questions or ask a new question.