# calculus

The rate at which an amount of a radioactive substance decays is modeled by the differential equation dA/dt = kA, where A is the mass in grams, t is the time in years, and k is a constant. Answer the following.

a) If a 100-gram sample of the radioactive substance decays to 95 grams after 1 year, find an equation that can model the mass of the of the sample after t years.
b) Find the mass of the sample after 50 years.
c) The half-life of a substance is the amount of time it takes for a sample to decay to half its original size. Find the half-life of the radioactive substance.

1. let the equation be
A = 100 e^(kt)

a) if amount = 95
95 = 100 e^(1k)
.95 = e^k
k = ln .95

so A = 100 e^(ln.95 t)
when t = 50
A = 100 e^(50ln.95) = 7.69 g are left

for half-life time, only 50 g of the original 100g would remain
50 = 100 e^(ln.95 t)
.5 = e^(ln.95 t)
ln.95t = ln.5
t = ln.5/ln.95 = appr13.5 years

posted by Reiny

First Name

## Similar Questions

1. ### Calculus

The rate of decay is proportional to the mass for radioactive material. For a certain radioactive isotope, this rate of decay is given by the differential equation dm/dt = -.022m, where m is the mass of the isotope in mg and t is
2. ### algebra

A radioactive substance decays according to the formula A=A0e^kt where A0 is the initial amount of substance (in grams) A is the amount of substance(in grams) after t years k is a constant The half-life of the substance is 10
3. ### Math

A radioactive substance decays according to the formula Q(t) = Q0e−kt where Q(t) denotes the amount of the substance present at time t (measured in years), Q0 denotes the amount of the substance present initially, and k (a
4. ### Math

A radioactive substance decays according to the formula Q(t) = Q0e−kt where Q(t) denotes the amount of the substance present at time t (measured in years), Q0 denotes the amount of the substance present initially, and k (a
5. ### Math algebra

The radioactive decay of a substance is expressed by A=A^0 e^ -kt, where the initial amount A^0, decays to an amount A after t years. The positive constant k differs for each substance. Strontium 90 decays such that k=.028. Find
6. ### math

The radioactive decay of a substance is expressed by A=A^0 e^ -kt, where the initial amount A^0, decays to an amount A after t years. The positive constant k differs for each substance. Strontium 90 decays such that k=.028. Find
7. ### Calculus-derivatives

Verify if these are correct answers. 1. The derivative of f(x)=e^2x -e^-2x is f'(x)=2e^2x - 2e^-2x? 2.A certain radioactive substance is decaying so that at time t, measured in years, the amount of the substance, in grams, given
8. ### calculus

The rate of decay in the mass, M, of a radioactive substance is given by the differential equation dM dt equals negative 1 times k times M, where k is a positive constant. If the initial mass was 100g, then find the expression for
9. ### Calculus

a certain radioactive substance is decaying so that at time t, measured in years, the amount of the substance, in grams, is given by the function f(t)=3e^-3t. What is the rate of decay of the substance after half a year: I first
10. ### Pre Calculus

Exponential growth and decay find the half life of a radioactive substance if 220 grams of the substance decays to 200 grams in 4 years?

More Similar Questions