math/ calculus

given h(x)= cotx/x find h'(ð/2)

asked by Angie
  1. h'(x) = (x(-csc^2 x) - cotx)/x^2

    then h'(π/2) = ((π/2)(-1) - 0)/(π^2 /4)
    = (-π/2) / (π^2/4) = -2/π

    posted by Reiny

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    1)A piano tuner uses a tuning fork. If middle C has a frequency of 264 vibrations per second, write an equation in the form d=sinw(t) for the simple harmonic motion. 2) Verify the identity tan^2X-cot^2X/tanX+cotX=tanX-cotX I'm not
  2. math

    sin2x-cotx = -cotxcos2x Using the various trigonometric identities(i.e. double angle formulas, power reducing formulas, half angle formulas, quotient identities, etc.) verify the identity. I first added cotx to both sides to get
  3. trig

    express this in sinx (1/ cscx + cotx )+ (1/cscx- cotx) i got 2sinx is that right?? and B) express in cosx problem: is 1 + cotx/cscx - sin^2x i get to the step of 1 + cos-sin^2x and im stuck..help! (1/cscx + cotx) + (1/cscx - cotx)
  4. a math

    Prove cotx-1/cotx+1 = sec2x - tan2x I prove till cotx-1/cotx+1 =1/1+tanx - tanx/1+tanx
  5. drwls

    My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to
  6. math

    solve each identity algebraically 1)(1-tanx)/(1-cotx)=-tanx 2)(1+cotx)/(1+tanx)=cotx
  7. Pre - calculus

    Can someone please explain how to simplify this proiblem: cotx/sec^2 + cotx/csc^2
  8. Trigonometry

    Simply: cot(-x)-1/1-tan(-x) Is it -cotx? The other answer choice is: cotx.
  9. Pre-Calc

    How do I solve this? My work has led me to a dead end. tan(45-x) + cot(45-x) =4 my work: (tan45 - tanx)/(1+ tan45tanx) + (cot45 - cotx)/(1 + cot45cotx) = 4 (1-tanx)/(1+tanx) + (1-cotx)/(1+cotx) = 4 Then I found a common
  10. trigonometry

    Prove cotx-1/cotx+1=1-sin2x/cos2x
  11. Please help

    Write in terms of cos and sin function. cotx*secx I know cotx = cosx/sinx and sec x= 1/cos x. but how do i solve it?

More Similar Questions