# math/ calculus

given h(x)= cotx/x find h'(ð/2)

1. h'(x) = (x(-csc^2 x) - cotx)/x^2

then h'(π/2) = ((π/2)(-1) - 0)/(π^2 /4)
= (-π/2) / (π^2/4) = -2/π

posted by Reiny

## Similar Questions

1. ### Math

1)A piano tuner uses a tuning fork. If middle C has a frequency of 264 vibrations per second, write an equation in the form d=sinw(t) for the simple harmonic motion. 2) Verify the identity tan^2X-cot^2X/tanX+cotX=tanX-cotX I'm not
2. ### math

sin2x-cotx = -cotxcos2x Using the various trigonometric identities(i.e. double angle formulas, power reducing formulas, half angle formulas, quotient identities, etc.) verify the identity. I first added cotx to both sides to get
3. ### trig

express this in sinx (1/ cscx + cotx )+ (1/cscx- cotx) i got 2sinx is that right?? and B) express in cosx problem: is 1 + cotx/cscx - sin^2x i get to the step of 1 + cos-sin^2x and im stuck..help! (1/cscx + cotx) + (1/cscx - cotx)
4. ### a math

Prove cotx-1/cotx+1 = sec2x - tan2x I prove till cotx-1/cotx+1 =1/1+tanx - tanx/1+tanx
5. ### drwls

My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to
6. ### math

solve each identity algebraically 1)(1-tanx)/(1-cotx)=-tanx 2)(1+cotx)/(1+tanx)=cotx
7. ### Pre - calculus

Can someone please explain how to simplify this proiblem: cotx/sec^2 + cotx/csc^2
8. ### Trigonometry

Simply: cot(-x)-1/1-tan(-x) Is it -cotx? The other answer choice is: cotx.
9. ### Pre-Calc

How do I solve this? My work has led me to a dead end. tan(45-x) + cot(45-x) =4 my work: (tan45 - tanx)/(1+ tan45tanx) + (cot45 - cotx)/(1 + cot45cotx) = 4 (1-tanx)/(1+tanx) + (1-cotx)/(1+cotx) = 4 Then I found a common
10. ### trigonometry

Prove cotx-1/cotx+1=1-sin2x/cos2x