college algebra

Use the intermediate value theorem to determine whether the polynomial function has a zero in the given interval.
f(x)=8x^5-4x^3-9x^2-9;[1,2]

  1. 👍
  2. 👎
  3. 👁
  1. Calculate f(x) at x = 1 and 2, and see if it changes sign between those two points.

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Alegbra 2

    Use the rational root theorem to list all possible rational roots for the equation. X^3+2x-9=0. Use the rational root theorem to list all possible rational roots for the equation. 3X^3+9x-6=0. A polynomial function P(x) with

  2. calc help showed work

    If the function f has a continuous derivative on [0,c], the the integral(o to c) of f'(x)dx= a)f(c)-f(0) b)absolute value (f(c)- f(0)) c) f(c) d)f'(x)=c e)f"(c)-f"(0) My work: so the the answer to the integral is f(x) and when

  3. Calculus

    Let f be a twice-differentiable function such that f(2)=5 and f(5)=2. Let g be the function given by g(x)= f(f(x)). (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1. (b) Show that g' (2) = g' (5). Use

  4. Math

    Which of the following statements about a polynomial function is false? 1) A polynomial function of degree n has at most n turning points. 2) A polynomial function of degree n may have up to n distinct zeros. 3) A polynomial

  1. math

    Determine if the Mean Value Theorem for Integrals applies to the function f of x equals the square root of x on the interval [0, 4]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem.

  2. Math

    Determine if the Mean Value Theorem for Integrals applies to the function f(x) = x3 - 16x on the interval [-1, 1]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem.

  3. Calculus

    Determine if the Mean Value Theorem for Integrals applies to the function f(x) = √x on the interval [0, 4]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem. a) No, the theorem does not apply b)

  4. Calculus

    1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2]. 2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be

  1. calculus

    3x4 − 8x3 + 5 = 0, [2, 3] (a) Explain how we know that the given equation must have a root in the given interval. Let f(x) = 3x4 − 8x3 + 5. The polynomial f is continuous on [2, 3], f(2) = < 0, and f(3) = > 0, so by the

  2. Calculus

    Determine if the Mean Value Theorem for Integrals applies to the function f(x)=2-x^2 on the interval [0,√2). If so, find the x-coordinates of the point(s) guaranteed by the theorem a) No, the Mean Value Theorem for Integrals

  3. Algebra 2

    Use the factor theorem to determine whether the binomial is a factor of the given polynomial. 1. t+sqrt2; P(t)=t^5+t^4+4t+4 2. z-i; P(z)=z^7+z^6+z^5+z^4+z^3+z^2+z+1 3. z+2i; P(z)=z^3+z^2+4z+4 Thanks

  4. calculus

    given the function f(x)= x^4 -3x^3 -2x^2 + 5x + 1 use the intermediate value theorem to decide which of the following intervals contains at least one zero, select all that apply (4 answers) a) [-2,-1] b) [-1,0] c) [0,1] d) [1,2]

You can view more similar questions or ask a new question.