math
 👍 0
 👎 0
 👁 401

 👍 0
 👎 0
Respond to this Question
Similar Questions

Calculus Help Please Urgent!!!
A piece of wire 14 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (a) How much wire should be used for the square in order to maximize the total area? 14 m this

HELLP!! calculus
A piece of wire 25 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much of the wire should go to the square to maximize the total area enclosed by both figures? (b) how

Calculus!!!
A piece of wire 28 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much wire should be used for the square in order to maximize the total area? (b) How much wire should

Calculus
A piece of wire 40cm long is cut into two pieces. One piece is bent into the shape of a square and the other is bent into the shape of a circle. How should the wire be cut so that the total area enclosed is a) a maximum? /b) a

Calculus
a piece of wire 12 ft. long is cut into two pieces. one piece is made into a circle and the other piece is made into a square. Let the piece of length x be formed into a circle. allow x to equal 0 or 12, so all the wire is used

calculus
A piece of wire 18 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much wire should be used for the square in order to maximize the total area?

Calculus
A wire 60 cm long is to be cut into two pieces. One of the pieces will be bent into the shape of a square and the other into the shape of an equilateral triangle, as shown in the diagram below: a diagram showing a 60 cm wire cut

Calculus 1
A piece of wire 23 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (a) How much wire should be used for the square in order to maximize the total area? (b) How

Calculus
A wire 7 meters long is cut into two pieces. One piece is bent into a square for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be

Calculus
A piece of wire x cm long is to be cut into two pieces, each to bent to be a square. the length of a side of one square is to be 9 times the length of a side of the other . Express the sum of the areas of two squares in term of x

Calculus
A piece of wire 24 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (Give your answers correct to two decimal places.) (a) How much wire should be used for the circle in order to

math
a wire is bent to form four semicircles all with diameters of 32 cm, how long is the wire? round to the nearest hundredth
You can view more similar questions or ask a new question.