Physics

Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft literally weightless. Take the distance between the centers of the Earth and Moon to be 3.90E+5 km and the Moon-to-Earth mass ratio to be 1.200E-2. What is the spaceship's distance from the center of the Moon?

Bobpursely told me that:
Mm/Me=(d2/d)^2
where mm is mass moon, me mass earth, d2 is distance from craft to moon, and d is the distance from craft to earth.

My only question is, how can I get d in order to solve for d2?

  1. 👍 0
  2. 👎 0
  3. 👁 71
  1. Repeat:

    The Law of Universal Gravitation states that each particle of matter attracts every other particle of matter with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. Expressed mathematically,
    F = GM(m)/r^2
    where F is the force with which either of the particles attracts the other, M and m are the masses of two particles separated by a distance r, and G is the Universal Gravitational Constant. The product of G and, lets say, the mass of the earth, is sometimes referred to as GM or mu (the greek letter pronounced meuw as opposed to meow), the earth's gravitational constant. Thus the force of attraction exerted by the earth on any particle within, on the surface of, or above, is F = 1.40766x10^16 ft^3/sec^2(m)/r^2 where m is the mass of the object being attracted and r is the distance from the center of the earth to the mass.
    The gravitational constant for the earth, GM(E), is 1.40766x10^16ft^3/sec^2. The gravitational constant for the moon, GM(M), is 1.7313x10^14ft^3/sec^2. Using the average distance between the earth and moon of 239,000 miles, let the distance from the moon, to the point between the earth and moon, where the gravitational pull on a 32,200 lb. satellite is the same, be X, and the distance from the earth to this point be (239,000 - X). Therefore, the gravitational force is F = GMm/r^2 where r = X for the moon distance and r = (239000 - X) for the earth distance, and m is the mass of the satellite. At the point where the forces are equal, 1.40766x10^16(m)/(239000-X)^2 = 1.7313x10^14(m)/X^2. The m's cancel out and you are left with 81.30653X^2 = (239000 - X)^2 which results in 80.30653X^2 + 478000X - 5.7121x10^10 = 0.

    From the quadratic equation, you get X = 23,859 miles, roughly one tenth the distance between the two bodies from the moon.


    So the spacecraft's distance from the earth is ~215,140 miles. Subtract this from the distance between the earth and moon and you will have your answer.


    Checking the gravitational pull on the 32,200 lb. satellite, whose mass m = 1000 lb.sec.^2/ft.^4. The pull of the earth is F = 1.40766x10^16(1000)/(215,140x5280)^2 = 10.91 lb. The pull of the moon is F = 1.7313x10^14(1000)/(23858x5280)^2 = 10.91 lb.
    This point is sometimes referred to as L2. There is an L5 Society which supports building a space station at this point between the earth and moon. There are five such points in space, L1 through L5, at which a small body can remain in a stable orbit with two very massive bodies. The points are called Lagrangian Points and are the rare cases where the relative motions of three bodies can be computed exactly. In the case of a body orbiting a much larger body, such as the moon about the earth, the first stable point is L1 and lies on the moon's orbit, diametrically opposite the earth. The L2 and L3 points are both on the moon-earth line, one closer to the earth than the moon and the other farther away. The remaining L4 and L5 points are located on the moon's orbit such that each forms an equilateral triangle with the earth and moon.

    1. 👍 0
    2. 👎 0
  2. The spacecraft's distance from the earth is ~215,140 miles. Subtract this from the distance between the earth and moon and you will have your answer.

    1. 👍 0
    2. 👎 0
  3. I've tried this several times, and I keep coming up with 43765.73 km, which is not correct. ???

    1. 👍 0
    2. 👎 0
    posted by Lindsay
  4. 215.140 miles = 346,217 km

    390,000 - 346,217 = 43,783 km

    The actual mean distance between the earth and moon is 238,868 miles or 384,338 km.

    Most often the mean distance is quoted as 239,000 miles or 384,551 km.

    Then, 384,551 - 346,237 = 38,313 km., or less than using your distance of 3.9x10^5.

    What is the answer you are seeking?

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. PHYSICS

    Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft

    asked by Courtney hey damon can i get the quadratic on this on January 9, 2008
  2. physics hey damon one more please! =]

    Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft

    asked by Jon on January 14, 2008
  3. physics

    still cant get this one? so damon i know you wanna help! or anyone else im open for suggestions haha Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at

    asked by rory on December 21, 2007
  4. Physics

    Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body exactly cancel, leaving the craft

    asked by Lindsay on December 16, 2007
  5. Physics

    I still cannot solve this problem: Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at that point, the tugs on the spaceship from each celestial body

    asked by Lindsay on December 17, 2007
  6. PHYSICSS!!!

    still cant get this one? so damon i know you wanna help! or anyone else im open for suggestions haha Consider a spaceship located on the Earth-Moon center line (i.e. a line that intersects the centers of both bodies) such that, at

    asked by Rory still need help damon and others on December 26, 2007
  7. Calculus Physics

    Imagine a spaceship on its way to the moon from the earth. Find the point, as measured from the center of the earth, where the force of gravity due to the earth is balanced exactly by the gravity of the moon. This point lies on a

    asked by danny on March 2, 2015
  8. Physics

    A spaceship of mass 175,000 kg travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. At what distance from the center of the Earth is the force due to the Earth

    asked by Meder on February 24, 2013
  9. physics

    magine a straight line connecting the centers of the earth and the moon. At some point along this line the gravitational forces pulling a spacecraft towards the moon and towards the earth exactly balance each other, and the craft

    asked by peter on March 20, 2011
  10. physics

    A spaceship of mass m travels from the Earth to the Moon along a line that passes through the center of the Earth and the center of the Moon. (a) At what distance from the center of the Earth is the force due to the Earth three

    asked by Bob on December 2, 2011

More Similar Questions