calculus

Recall that a function G(x) has the limit L as x tends to infinity, written
lim(x->infinity)G(x) = L,

if for any epsilon > 0, there exists M >0 so that if x > M, then |G(x) − L| < epsilon.

This means that the limit of G(x) as x tends to infinity does not exist if for
any L and positive M, there exists epsilon > 0 so that for some x > M,
|G(x) − L| >(or equal to) epsilon.

Using this definition, prove that
the indefinite integral of sin(theta)
diverges. for the interval 2pi to infinity.

[Hint: Consider the cases L >(or equal t0) 1 and L < 1 in order to deal
with all possible L values.]

  1. 👍
  2. 👎
  3. 👁
  1. For any divergence especially with trig definitions in infinite series you will want to make sure that you can prove it to something. Comparison test or limit comparison works really well just remember that the sine function is only good from -1 to 1

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    Which describes the end behavior of the graph of the function f(x)=-2x^3-5x^2+x? a. f(x) approaches infinity as x approaches negative infinity and f(x) approaches infinity as x approaches infinity b. f(x) approaches negative

  2. Pre-cal

    Please determine the following limits if they exist. If the limit does not exist put DNE. lim 2+6x-3x^2 / (2x+1)^2 x-> - infinity lim 4n-3 / 3n^2+2 n-> infinity I did lim 2+6x-3x^2 / (2x+1)^2 x-> - infinity (2+6x-3x²)/(4x²+4x+1)

  3. Math

    The line x=c is a veritcal asymptote of the graph of the function f Which of the following statements cannot be true? A. Lim as x approaches c from the left f(x)= infinity B. lim as x apporaches infinity f(x)=c C. f(c) is

  4. Calculus

    What does lim x-->∞ f(x)/g(x)=0 show? a) g(x) grows faster than f(x) as x goes to infinity b) f(g) and g(x) grow at the same rate as x goes to infinity c) f(x) grows faster than g(x) as x goes to infinity d) LHopital's Rule must

  1. Calculus Limits

    Question: If lim(f(x)/x)=-5 as x approaches 0, then lim(x^2(f(-1/x^2))) as x approaches infinity is equal to (a) 5 (b) -5 (c) -infinity (d) 1/5 (e) none of these The answer key says (a) 5. So this is what I know: Since

  2. Calculus, please check my answers!

    1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 ***The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 ***2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 ***9 The

  3. math

    If f(x)=x-7 and g(x)=sqrt(4-x), what is the domain of the function f/g? a. (-infinity, 4) b. (-infinity, 4] c. (4, infinity) d. [4, infinity) e. (4, 7) U (7, infinity)

  4. Help me check my calculus answers

    1. Which of the following functions grows the fastest as x goes to infinity? - 2^x - 3^x - e^x inf f(x)/g(x) = 5 show? - g(x) grows faster than f(x) as x goes to infinity. - f(x) and g(x) grow at the same rate as x goes to

  1. CALCULUS LIMITS

    What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of

  2. Check my CALCULUS work, please! :)

    Question 1. lim h->0(sqrt 49+h-7)/h = 14 1/14*** 0 7 -1/7 Question 2. lim x->infinity(12+x-3x^2)/(x^2-4)= -3*** -2 0 2 3 Question 3. lim x->infinity (5x^3+x^7)/(e^x)= infinity*** 0 -1 3 Question 4. Given that: x 6.8 6.9 6.99 7.01

  3. Calculus

    F(x)=(2x-1)/ (|x| -3) Rewrite f(x) as a piecewise function. Then find the limit as it approaches positive infinity and negative infinity.

  4. Calculus check please

    1. Which of the following functions grows the fastest as x goes to infinity? - 2^x - 3^x - e^x (my answer) - x^20 2. Compare the rates of growth of f(x) = x + sinx and g(x) = x as x approaches infinity. - f(x) grows faster than

You can view more similar questions or ask a new question.