physics

In the Bohr model of the hydrogen atom,
the speed of the electron is approximately
1.97 × 106 m/s.
Find the central force acting on the electron
as it revolves in a circular orbit of radius
4.72 × 10−11 m.
Answer in units of N.

  1. 👍 0
  2. 👎 0
  3. 👁 88
asked by go

Respond to this Question

First Name

Your Response

Similar Questions

  1. 11th grade

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.17 x 10^6 m/s. find the central force acting on the electron as it revolves in a circular orbit of radius 5.42 x 10^-11m.

    asked by Julia on December 5, 2010
  2. Physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.45 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 5.18 × 10−11 m. Answer in units of N

    asked by Kaylee on June 22, 2014
  3. physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 1.97 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 4.72 × 10−11 m. Answer in units of

    asked by go on May 11, 2011
  4. Physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.1 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 4.51 × 10−11 m. Answer in units of N

    asked by Kate on October 29, 2013
  5. physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 1.97 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 4.72 × 10−11 m. Answer in units of

    asked by go on May 11, 2011
  6. physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 1.97 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 4.72 × 10−11 m. Answer in units of

    asked by go on May 11, 2011
  7. Physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.41 × 10^6 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 5.15 × 10^−11 m. Answer in units of

    asked by Amanda on May 9, 2009
  8. Physics

    In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.31 × 106 m/s.Find the central force acting on the electron as it revolves in a circular orbit of radius 4.95 × 10−11 m. Answer in units of N.

    asked by CR on February 20, 2011
  9. physics

    The radius of circular electron orbits in the Bohr model of the hydrogen atom are given by (5.29 ✕ 10^−11 m)n^2, where n is the electron's energy level (see figure below). The speed of the electron in each energy level is

    asked by joy on February 16, 2018
  10. Physics

    Could someone help me with these questions. . . please 1. How does Rutherford’s model of the atom account for the back – scattering of alpha particles directed at the gold leaf 2. The higher the energy level occupied by an

    asked by Mike on November 12, 2007

More Similar Questions