# Math help again

cos(3π/4+x) + sin (3π/4 -x) = 0
= cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx - cos(3π/4)sinx
= -1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx - (-1/sqrt2sinx)
I canceled out -1/sqrt2cosx and 1/sqrt2cosx
Now I have
1/sqrt sinx + 1/sqrt2 sinx

And that doesn't equal 0. So where did I go wrong?

Also cos(x+y)cosy + sin(x+y)siny = cosx
I ended up with
(cosxcosy) + sinxsinycosy + (sinxcosy) + cosxsin^2y

I don't know what to do next.

1. 👍 0
2. 👎 0
3. 👁 604
1. Try your sum and difference identities again. I don't believe you've expanded them correctly.

cos(x + y) = cosx * cosy - sinx * siny
cos(x - y) = cosx * cosy + sinx * siny

sin(x + y) = sinx * cosy + cosx * siny
sin(x - y) = sinx * cosy - cosx * siny

1. 👍 0
2. 👎 0
2. cos(3π/4+x)

1. 👍 0
2. 👎 0

## Similar Questions

1. ### Math

How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x - 2tanxsinx=0 tanx(tanx - 2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX

2. ### Trigonometry

4. Find the exact value for sin(x+y) if sinx=-4/5 and cos y = 15/17. Angles x and y are in the fourth quadrant. 5. Find the exact value for cos 165degrees using the half-angle identity. 1. Solve: 2 cos^2x - 3 cosx + 1 = 0 for 0

3. ### Trig.......

I need to prove that the following is true. Thanks (2tanx /1-tan^x)+(1/2cos^2x-1)= (cosx+sinx)/(cosx - sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

4. ### math;)

The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

1. ### maths

(Sin^3x-cos^3x)/(sinx-cosx) – cosx/sqrt(1+cot^2x)-2tanxcotx=-1 where x∈(0,2pi) general value of x.

2. ### Precalculus

Rewrite as single trig function: sin(8x)cosx-cos(8x)sinx I know I can simplify sin(8x) into 4sin2xcos2xcos4x, but I'm stuck after that

3. ### Math:)

Prove csc(pi/2-x)=sec x. a. csc(pi/2-x)=1/sin(pi/2)cosx+cos(pi/2)cosx=sec x b. csc(pi/2-x)=1/sin(pi/2)sinx-cos(pi/2)cosx=sec x c. csc(pi/2-x)=1/sin(pi/2)sinx+cos(pi/2)cosx=sec x d. csc(pi/2-x)=1/sin(pi/2)cosx-cos(pi/2)sinx=sec x

4. ### Trig Identities

Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /

1. ### Math

Suppose f(x) = sin(pi*cosx) On any interval where the inverse function y = f –1(x) exists, the derivative of f –1(x) with respect to x is: a)-1/(cos(pi*cosx)), where x and y are related by the equation (satisfy the equation)

2. ### calc

Where do I start to prove this identity: sinx/cosx= 1-cos2x/sin2x please help!! Hint: Fractions are evil. Get rid of them. Well, cos2x = cos2x - sin2x, so 1-coscx = 1 - cos2x - sin2x = 1 - cos2x + sin2x You should be able to

3. ### tigonometry

expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b)

4. ### Math

1) evaluate without a calculator: a)sin(3.14/4) b) cos(-3(3.14)/4) c) tan(4(3.14)/3) d) arccos(- square root of three/2) e) csctheata=2 2) verify the following identities: a) cotxcosx+sinx=cscx b)[(1+sinx)/ cosx] + [cosx/