Calculus II

y = *The Integral Of sin(4e^t)dt*

a = 0
b = ln(2x)

I'm supposed to find the derivative of y with respect to x. Except I just can't find the right answer.

  1. 👍
  2. 👎
  3. 👁
  4. ℹ️
  5. 🚩
  1. Help? Please?

    1. 👍
    2. 👎
    3. ℹ️
    4. 🚩

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    1. Find the domain for the particular solution to the differential equation dy/dx=3y/x, with initial condition y(1) = 1. A. x > 0 B. x < 0 C. x ≠ 0 D. All real numbers 2. Use geometry to evaluate the integral from negative 2 to

  2. calculus

    ∫ sin(x)sin(3x)dx find the integral

  3. calc

    d/dx integral from o to x of function cos(2*pi*x) du is first i do the integral and i find the derivative right. by the fundamental theorem of calculus, if there is an integral from o to x, don't i just plug the x in the function.

  4. CALCULUS LIMITS

    What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of

  1. Linear Algebra

    Hello, I'm trying to find the Fourier Series of a function which is 1 from -pi/2 to pi/2, and zero everywhere else inside of -pi to pi. I realize this is a square wave and I began the problem with a piecewise function s(t) = 1

  2. math;)

    Show that sin(x+pi)=-sinx. So far, I used the sum formula for sin which is sin(a+b)=sin a cos b+cos a sin b. sin(x+pi)=sin x cos pi+cos x sin pi I think I am supposed to do this next, but I am not sure. sin(x+pi)=sin x cos x+sin

  3. Calculus check and help

    Let f and g be the functions given by f(x)=1+sin(2x) and g(x)=e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. A. Find the the area of R. B. Find the value of z so that x=z cuts the

  4. calculus

    Find the volume V of the solid in the rst octant bounded by y = 0, z = 0, y = 3, z = x, and z + x = 4. The best part about this problem is that I solved it using basic geometry but am expected to do it using a triple integral that

  1. Calc

    Evaluate the integral using any method: (Integral)sec^3x/tanx dx I started it out and got secx(1tan^2x)/tanx. I know I just have to continue simplifying and finding the integral, but I'm stuck on the next couple of steps. Also, I

  2. Precalculus

    sin^2(2x)=2sinxcosx. Find all solutions to each equation in the interval [0, 2pi) So I started off changing 2sinxcosx = sin(2x), and my equation ended as sin^2(2x) = sin(2x). I subtracted sin(2x) by both sides and factored out

  3. Math (Calculus)

    The prompt for this question is f(x) =sin(x^2) A)Write the first four terms of the Maclaurin series for f(x) B)Use the Maclaurin series found in Part A to approximate the integral from 0 to 1 of sin(x^2) dx C)How many terms are

  4. math

    I'm trying to find the convolution f*g where f(t)=g(t)=sin(t). I set up the integral and proceed to do integration by parts twice, but it keeps working out to 0=0 or sin(t)=sin(t). How am I supposed to approach it? integral

View more similar questions or ask a new question.