mean value theorem

Show that the function f(x)=1-|x|, [-1,1] does not satisfy the hypotheses of the mean value theorem on the given interval.

Also how do I graph the function together with the line through the points
A(a,f(a)) and B(b,f(b)).

Also how do I find values of c in (a,b) that satisfy f'(c)=f(b)-f(a) / b-a

Thank you so much in advance.


The function is not differentiable at 0. The assumption of the MVT is that is is continous, and differentiable on the interval.

Points a will have to be in the same side of origin as point b ie, either -1 to 0, or 0 to 1. Given that, then c will be between a and b.

  1. 👍
  2. 👎
  3. 👁

Respond to this Question

First Name

Your Response

Similar Questions

  1. math

    Let f be the function with f(0) = 1/ (pi)^2, f(2) = 1/(pi)^2, and the derivative given by f'(x) = (x+1)cos ((pi)(x)). How many values of x in the open interval (0, 2) satisfy the conclusion of the Mean Value Theorem for the

  2. Calculus

    Let f be a twice-differentiable function such that f(2)=5 and f(5)=2. Let g be the function given by g(x)= f(f(x)). (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1. (b) Show that g' (2) = g' (5). Use

  3. Calculus

    if f(x)= |(x^2-9)(x^2+1)| how many numbers in the interval [-1,1] satisfy the mean value theorem? None 1 2 3 Will someone please explain in detail?

  4. Calc

    Given function f defined by f(x) = ( 1- x)³. What are all values of c, in the closed interval [0,3], that satisfy the conditions of the Mean Value Theorem?

  1. Calculus

    Find all numbers c that satisfy the conclusion of Rolle's Theorem for the following function. If there are multiple values, separate them with commas; enter N if there are no such values. f(x)= x^2-10x+3, [0,10]

  2. Calculus

    Determine if the Mean Value Theorem for Integrals applies to the function f(x) = √x on the interval [0, 4]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem. a) No, the theorem does not apply b)

  3. Calculus

    Find all values of c that satisfy the Mean Value Theorem for f(x) = x^3 + 1 on [2, 4].

  4. Calculus

    Determine if the Mean Value Theorem for Integrals applies to the function f(x)=2-x^2 on the interval [0,√2). If so, find the x-coordinates of the point(s) guaranteed by the theorem a) No, the Mean Value Theorem for Integrals

  1. Calculus

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) =

  2. calculus

    If f(x) = ι(x2 - 8)ι, how many numbers in the interval 0 ≤ x ≤ 2.5 satisfy the conclusion of the mean value theorem? (4 points) Three Two One None

  3. calculus

    Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = x3 + x − 9, [0, 2]

  4. calculus

    Find the values of c that satisfy the Mean Value Theorem for f(x)=6/x-3 on the interval [-1,2]. Is it no value of c in that interval because the function is not continuous on that interval???

You can view more similar questions or ask a new question.