# Calculus

Determine if Rolle's Theorem applies to the given function f(x)=2 cos(x) on [0, pi]. If so, find all numbers c on the interval that satisfy the theorem.

1. 👍 0
2. 👎 0
3. 👁 304
1. Rolle's theorem states that a differentiable function that has equal values at two distinct points must have a point somewhere between them where the first derivative is zero.

Rolle's theorem does not apply to that function in that interval, since f(x) decreases from 1 at x = 0 to -1 at pi. There are no two values of x in the [0, pi] interval where the f(x) values are the same.

1. 👍 0
2. 👎 0

## Similar Questions

1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate,

2. ### math

Let f be the function with f(0) = 1/ (pi)^2, f(2) = 1/(pi)^2, and the derivative given by f'(x) = (x+1)cos ((pi)(x)). How many values of x in the open interval (0, 2) satisfy the conclusion of the Mean Value Theorem for the

3. ### math

Sketch a right triangle corresponding to the trigonometric function of the acute angle θ. Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of θ. cot(θ) = 3 sin(θ)=

4. ### Calculus

Determine if the Mean Value Theorem for Integrals applies to the function f(x) = √x on the interval [0, 4]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem. a) No, the theorem does not apply b)

1. ### Calculus

Rolle's theorem cannot be applied t the function f(x)= ln(x+2) on the interval [-1,2] because a) f is not differentiable on the interval [-1,2] b) f(-1)≠ f(2) c) All of these d) Rolle's theorem can be applied to f(x)= ln(x+2) on

2. ### Calculus

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) =

3. ### Math

Determine if the Mean Value Theorem for Integrals applies to the function f(x) = x3 - 16x on the interval [-1, 1]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem.

4. ### trig

Determine the period, amplitude and phase shift for each given function: A)y = -4 cos 3x + 5 B)y = 2/3 sin (30x-90degrees)-10 c)y = -0.38 tan (x/3+pi/3) d)y = pi cos(2x)+ pi

1. ### Math

Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. (Select all that apply.) f (x) = sin(x), [0, 2π] If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f

2. ### Calculus

Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a,b) such that f'(x)=0. f(x) = x^(2/3) - 1 [-8,8] I plugged in both

3. ### Calculus

1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2]. 2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be

4. ### math

Determine if the Mean Value Theorem for Integrals applies to the function f of x equals the square root of x on the interval [0, 4]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem.