Trig

Use Trig identities to verify that sec^4(x)-tan^4(x)=1+2tan^2(x), Only work with one side of the equation

asked by Anonymus
  1. sec^4(x) - tan^4(x) =
    = (1 + tan^2(x))^2 - tan^4(x)
    = 1 + 2tan^2(x) + tan^4(x) - tan^4(x)
    = 1 + 2tan^2(x)

    QED

    posted by agrin04

Respond to this Question

First Name

Your Response

Similar Questions

  1. Trig

    Verify each trigonimetric equation by substituting identities to match right hand side of the equation to the hand side of the equation. Please help. -tan^2x+sec^2x=1
  2. calculus (check my work please)

    Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫
  3. Trig Identities

    Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /
  4. Math

    Verify the identities by transforming the left-hand side into the right-hand side. Show work. (tan^2X)/(1-cos^2x)= sec^2x HELP
  5. Math - Trigonometry

    Verify the following: 1. cos x/(1-sinx)= sec x + tan x 2. (tanx+1)^2=sec^2x + 2tan x 3. csc x = )cot x + tan x)/sec x 4. sin2x - cot x = -cotxcos2x
  6. Trig

    Proving Identities: 2 columns (tan + cot)^2 = sec^2 + csc^2 I'm having trouble breaking down the left side to = the right side.. Any help please
  7. pre calculus 2

    use the fundamental trig. Identities to simplify tan^4x+2tan^2x+1
  8. Math

    Prove Trig. Identities 1. sec è (sec è - cos è)= tan^2 è 2. tan^2 è (1 + cot^2 è) = sec^2 è
  9. trig

    Verify that each trigonometric equation is an identity tan^2+1/sec α =sec α
  10. Math - Trig

    I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x) - sin(x) 2. csc(x) - sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(-x)/sec(-x) = -cot(x)

More Similar Questions