# Trig

Use Trig identities to verify that sec^4(x)-tan^4(x)=1+2tan^2(x), Only work with one side of the equation

1. sec^4(x) - tan^4(x) =
= (1 + tan^2(x))^2 - tan^4(x)
= 1 + 2tan^2(x) + tan^4(x) - tan^4(x)
= 1 + 2tan^2(x)

QED

posted by agrin04

## Similar Questions

1. ### Trig

Verify each trigonimetric equation by substituting identities to match right hand side of the equation to the hand side of the equation. Please help. -tan^2x+sec^2x=1
2. ### calculus (check my work please)

Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫
3. ### Trig Identities

Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /
4. ### Math

Verify the identities by transforming the left-hand side into the right-hand side. Show work. (tan^2X)/(1-cos^2x)= sec^2x HELP
5. ### Math - Trigonometry

Verify the following: 1. cos x/(1-sinx)= sec x + tan x 2. (tanx+1)^2=sec^2x + 2tan x 3. csc x = )cot x + tan x)/sec x 4. sin2x - cot x = -cotxcos2x
6. ### Trig

Proving Identities: 2 columns (tan + cot)^2 = sec^2 + csc^2 I'm having trouble breaking down the left side to = the right side.. Any help please
7. ### pre calculus 2

use the fundamental trig. Identities to simplify tan^4x+2tan^2x+1
8. ### Math

Prove Trig. Identities 1. sec è (sec è - cos è)= tan^2 è 2. tan^2 è (1 + cot^2 è) = sec^2 è
9. ### trig

Verify that each trigonometric equation is an identity tan^2+1/sec Î± =sec Î±
10. ### Math - Trig

I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x) - sin(x) 2. csc(x) - sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(-x)/sec(-x) = -cot(x)

More Similar Questions