physics

The 2 kg block in Figure 7-25 slides down a frictionless curved ramp, starting from rest at a height of h = 3 m. The block then slides d = 12 m on a rough horizontal surface before coming to rest.

Figure 7-25

(a) What is the speed of the block at the bottom of the ramp?

(b) What is the energy dissipated by friction?

(c) What is the coefficient of friction between the block and the horizontal surface?

  1. 👍
  2. 👎
  3. 👁
  1. a)
    (1/2) m v^2 = m g h
    so
    v = sqrt(2 g h)

    b)
    m g h

    c)
    mu m g * 12 = m g h
    so
    mu = h/12 = 3/12 = .25

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. college physics

    A 0.50-kg block slides along a small track with elevated ends and a flat central part. The flat part has a length L = 1.85 m. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic

  2. physics

    A 5 kg block is placed near the top of a frictionless ramp, which makes an angle of 30o degrees to the horizontal. A distance d = 1.3 m away from the block is an unstretched spring with k = 3000 N/m. The block slides down the ramp

  3. physics

    A 1.9 kg block slides down a frictionless ramp, as shown in figure 8-28. The top of the ramp is 1.5 m above the ground; the bottom of the ramp is .25 m above the ground. The block leaves the ramp moving horizontally, and lands a

  4. Physics

    Block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic

  1. physics

    A 2 kg block, starting from the rest, slides 20 m down frictionless inclined plane, dropping a distance of 10m. The magnitude of the net force on the block while it is sliding is...? How do I solve this problem? And if it were to

  2. physics

    I am having great difficulty with this question. A block is placed on a frictionless ramp at a height of 12.5 m above the ground. Starting from rest, the block slides down the ramp. At the bottom of the ramp, the block slides onto

  3. physics

    An block of mass m , starting from rest, slides down an inclined plane of length L and angle θ with respect to the horizontal. The coefficient of kinetic friction between the block and the inclined surface is μ1 . At the bottom

  4. physics

    A 1.9- block slides down a frictionless ramp, as shown in the figure. The top of the ramp is = 2.1 above the ground; the bottom of the ramp is = 0.40 above the ground. The block leaves the ramp moving horizontally, and lands a

  1. Physics

    Starting from rest, a 4-kg block slides 10 m down a frictionless 30 degree incline. Determine the work done on the block by a) The force of gravity b) The normal force c) All of the forces (the net force) on the block d) Find the

  2. mechanics

    A 2kg box starts from rest and slides down an incline as shown in the picture above. If the block loses 24 Joules of energy due to friction as it slides down the ramp, what is the speed of the box as it reaches the bottom of the

  3. Impulse and Momentum

    A bullet of mass m is fired at speed v0 into a wooden block of mass M. The bullet instantaneously comes to rest in the block. The block with the embedded bullet slides along a horizontal surface with a coefficient of kinetic

  4. physics

    A 3.5-kg block slides down a ramp with friction, as shown in the figure. The top of the ramp is 1.5 m above the ground; the bottom of the ramp is h = 0.17 m above the ground. The block leaves the ramp moving horizontally, and

You can view more similar questions or ask a new question.