physics

block a of mass 4kg is on a horizontal, frictionless tabletop and is placed against a spring of negligible mass and spring constant 650n/m. the other end of the spring is attacked to a wall. the block is pushed toward the wall until the spring has been compressed a distance x. the block is released and follows the trajectory falling 0.80m vertically and stricking a target on the floor that is a horizontal distance of 1.3 m from the edge of the table. air resistance is negligible. A). calculate the time elapsed from the instant block A leaves the table to the instant it strikes the floor. B)calculate the speen of the block as it leaves the table. C)calculate the distance x the spring was ccompressed.

  1. 👍 0
  2. 👎 0
  3. 👁 306
asked by kim

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    block A (mass 2.04kg) rests on a tabletop. It is connected by a horizontal cord passing over a light, frictionless pulley to a hanging block B (mass 3.00kg ). The coefficient of kinetic friction between block A and the tabletop is

    asked by george on October 11, 2012
  2. Physics

    Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over a frictionless, massless pulley. Block B hangs down vertically. When the two blocks are released, Block B accelerates

    asked by Rachel on February 18, 2016
  3. Physics

    Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by Max on September 25, 2016
  4. Physics

    Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by Josh on September 25, 2016
  5. Physics

    Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by Plase help soon on September 25, 2016
  6. physics

    Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by Carly on October 8, 2015
  7. Physics

    Block A (Mass = 2.319 kg) and Block B (Mass = 1.870 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by ASak on September 25, 2016
  8. physics

    Block A (Mass = 5.195 kg) and Block B (Mass = 3.330 kg) are attached by a massless string as shown in the diagram. Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over

    asked by taylor on September 21, 2016
  9. Physics

    Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over a frictionless, massless pulley. Block B hangs down vertically. When the two blocks are released, Block B accelerates

    asked by Emily on February 18, 2016
  10. Physics

    Block A (Mass = 3.146 kg) and Block B (Mass = 2.330 kg) are attached by a massless string Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes overa frictionless, massless

    asked by Quaz on September 24, 2016

More Similar Questions