Calculus ll - Improper Integrals

Find the area of the curve y = 1/(x^3) from x = 1 to x = t and evaluate it for t = 10, 100, and 1000. Then find the the total area under this curve for x ≥ 1.

I'm not sure how to do the last part of question ("find the the total area under this curve for x ≥ 1.")

For the area of the curve, I found that the integral from 1 to t is (1/2)-[1/(2t^2)].

I used the equation I found and substituted t for 10, 100, and 1000, and got 0.495, 0.49995, and 0.4999995 respectively.

asked by Alyssa
  1. area = LIM [integral]1/x^3 dx from x = 1 to x -- infin.
    = lim (-(1/2)(1/x^2) from x=1 to x-- inf.
    = lim{ -(1/2)/x^2 as x--inf} - lim {(-1/2)/x^2 as x=1
    = 0 - (-1/2) = 1/2

    posted by Reiny
  2. or

    look at your expression of
    1/2 - 1/(2t^2)

    as t ---> infinity, doesn't 1/(2t^2) approach 0 ?

    so you are left with 1/2 -0
    = 1/2 , as your approximations suggested.

    posted by Reiny
  3. Oh! I understand now. The "total area" part kind of threw me off.

    Thank you so much!

    posted by Alyssa

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Calculus

    Integrals: When we solve for area under a curve, we must consider when the curve is under the axis. We would have to split the integral using the zeros that intersect with the axis. Would this be for all integrals? What if we just
  2. Statistics

    A certain curve (that is NOT the normal curve) is shown below. The curve is symmetric around 0, and the total area under the curve is 100%. The area between -1 and 1 is 58%. What is the area to the right of 1? I do not know how to
  3. calculus showed work

    find the area of the rgion bounded by the graphs of y=x^3-2x and g(x)=-x i drew the graph and half of the graph is above the xaxis and the other half is below the axis. so the integrals i came up with are two because i broke them
  4. Calculus

    Find the area cut off by x+y=3 from xy=2. I have proceeded as under: y=x/2. Substituting this value we get x+x/2=3 Or x+x/2-3=0 Or x^2-3x+2=0 Or (x-1)(x-2)=0, hence x=1 and x=2 are the points of intersection of the curve xy=2 and
  5. math, calculus 2

    Consider the area between the graphs x+y=16 and x+4= (y^2). This area can be computed in two different ways using integrals. First of all it can be computed as a sum of two integrals integrate from a to b of f(x)dx + integrate
  6. Calculus Area between curves

    Consider the area between the graphs x+6y=8 and x+8=y2. This area can be computed in two different ways using integrals First of all it can be computed as a sum of two integrals where a= , b=, c= and f(x)= g(x)= I found a, but not
  7. calculus II

    We're doing areas by integrals now, with 2 eqns. I have a few questions. 1. Sketch the region in the xy-plane defined by the inequalities x-2(y^2)> 0 and 1-x-abs(y)>0. and find its area. Would it be best to solve for x, then
  8. Calculus

    Calculate the Riemann sum of the area under the curve of f(x)=9-x^2 between x=-2 and x=3 The answer I come up with is 10/3, but when I solve using integrals, the answer I get is 100/3. Am I doing something wrong?
  9. brief calc

    Calculate the total area of the region described. Do not count area beneath the x-axis as negative. Bounded by the curve y = square root of x the x-axis, and the lines x = 0 and x = 16 This is under Integrals, i don't know what
  10. calculus(Lab)

    Well, first graph the graph of f(x)=-1/10x^2 + 3 2. We are going to approximate the area between f and the x-axis from x = 0 to x = 4 using rectangles (the method of Riemann sums). This is not the entire area in the first

More Similar Questions