Algebra2 Verify Identity

Verify the Identity:
csc(x)+sec(x)/sin(x)+cos(x)=cot(x)+tan(x)

the left side of the equation is all one term.

  1. 👍 0
  2. 👎 0
  3. 👁 122
asked by wruck
  1. Verify:
    (csc(x)+sec(x))/(sin(x)+cos(x))=cot(x)+tan(x)

    Left hand side
    (csc(x)+sec(x))/(sin(x)+cos(x))
    =(1/sin(x)+1/(cos(x))/(sin(x)+cos(x))
    =((cos(x)+sin(x))/(sin(x)cos(x))/(sin(x)+cos(x))
    =1/(sin(x)cos(x))

    Right hand side:
    cot(x)+tan(x)
    =cos(x)/sin(x) + sin(x)/cos(x)
    =(cos²(x) + sin²(x))/(sin(x)+cos(x))
    =1/(sin(x)+cos(x))

    So the identity is verified.

    1. 👍 0
    2. 👎 0
    posted by MathMate

Respond to this Question

First Name

Your Response

Similar Questions

  1. Trig

    The question is: Set up a 2 column proof to show that each of the equations is an identity. Transform the left side to become the right side. a. (tan + cot)^2 = sec^2 + csc^2 I'm having trouble with this. b. (cos + sin)/cos + (cos

    asked by Don on January 8, 2012
  2. Pre-Calculus

    I don't understand,please be clear! Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 t-sin^4 t=1-2sin^2 t 2. 1/cos s= csc^2 s - csc s cot s 3. (cos x/ sec x -1)- (cos x/ tan^2x)=cot^2 x

    asked by Anonymous on October 31, 2013
  3. trig

    For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. -tanxcosx A. sin^2x/cos^2x 2. sec^2x-1 B. 1/sec^2x 3. sec x/cscx C. sin(-x) 4. 1+sin^2x D.csc^2x-cot^2x+sin^2x 5.

    asked by gin on March 19, 2011
  4. verifying trigonometric identities

    How do I do these problems? Verify the identity. a= alpha, b=beta, t= theta 1. (1 + sin a) (1 - sin a)= cos^2a 2. cos^2b - sin^2b = 2cos^2b - 1 3. sin^2a - sin^4a = cos^2a - cos^4a 4. (csc^2 t / cot t) = csc t sec t 5. (cot^2 t /

    asked by Anonymous on March 3, 2008
  5. Pre-Calculus

    Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 t-sin^4 t=1-2sin^2 t 2. 1/cos s= csc^2 s - csc s cot s 3. (cos x/ sec x -1)- (cos x/ tan^2x)=cot^2 x 4. sin^3 z cos^2 z= sin^3 z - sin^5

    asked by Anonymous on October 31, 2013
  6. Trigonometry

    Verify the identities. 1.) SIN[(π/2)-X]/COS[(π/2)-X]=COT X 2.) SEC(-X)/CSC(-X)= -TAN X 3.) (1 + SIN Y)[1 + SIN(-Y)]= COS²Y 4.) 1 + CSC(-θ)/COS(-θ) + COT(-θ)= SEC θ (Note: Just relax through verifying/solving these nice fun

    asked by AwesomeGuy on February 14, 2013
  7. Math:)

    1. Simplify the expression. [csc^2(x-1)]/[1+sin x] a. csc x+1 b. csc x(csc x-1) c. sin^2 x-csc x**** d. csc^2 x-cos xtan x 2. Which of the following expressions can be used to complete the equation below? sec x/1+cot^2 x a. tan x

    asked by Girly Girl on March 21, 2018
  8. trig

    it says to verify the following identity, working only on one side: cotx+tanx=cscx*secx Work the left side. cot x + tan x = cos x/sin x + sin x/cos x = (cos^2 x +sin^2x)/(sin x cos x) = 1/(sin x cos x) = 1/sin x * 1/cos x You're

    asked by Devon on May 7, 2007
  9. Trigonometry

    Hello all, In our math class, we are practicing the trigonometric identities (i.e., sin^2(x)+cos^2(x)=1 or cot(x)=cos(x)/sin(x). Now, we are working on proofs that two sides of an equation are equal (for example, sin(x)*csc(x)=1;

    asked by Timothy on February 25, 2008
  10. Math - Trig

    I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x) - sin(x) 2. csc(x) - sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(-x)/sec(-x) = -cot(x)

    asked by Liath on September 21, 2009

More Similar Questions