# pre-cal

Given that lim x->c f(x)=6 and that lim x->c g(x)= -4, evaluate the following limit. Assume that c is a constant. The x in front of the f is confusing me.
lim [xf(x) + 3 g(x)]^2
x->c

1. 👍
2. 👎
3. 👁
1. The x in front of the f is any constant you would put in the equation.

Example: x->5 5=c
lim [xf(x) + 3 g(x)]^2
x->5

so, [5*6 + 5*(-4)]^2

You should be able to do the rest.

1. 👍
2. 👎
2. [c*6 + 3*(-4)]^2 = (6c -12)^2
= 36c^2 - 144c + 144

1. 👍
2. 👎

## Similar Questions

1. ### Calculus

Let f be a function defined for all real numbers. Which of the following statements must be true about f? Which might be true? Which must be false? Justify your answers. (a) lim of f(x) as x approaches a = f(a) (b) If the lim of

1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 ***The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 ***2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 ***9 The

3. ### Math

Evaluate the limit using the appropriate Limit Law(s). (If an answer does not exist, enter DNE.) lim t → −1 (t2 + 1)^4(t + 3)^5

4. ### Calculus Limits

Question: If lim(f(x)/x)=-5 as x approaches 0, then lim(x^2(f(-1/x^2))) as x approaches infinity is equal to (a) 5 (b) -5 (c) -infinity (d) 1/5 (e) none of these The answer key says (a) 5. So this is what I know: Since

1. ### Calculus

For the function f whose graph is given, state the following (a) lim x → ∞ f(x) (b) lim x → −∞ f(x) (c) lim x → 1 f(x) (d) lim x → 3 f(x) (e) the equations of the asymptotes (Enter your answers as a comma-separated

2. ### Calculus

Find the limit. lim 5-x/(x^2-25) x-->5 Here is the work I have so far: lim 5-x/(x^2-25) = lim 5-x/(x-5)(x+5) x-->5 x-->5 lim (1/x+5) = lim 1/10 x-->5 x-->5 I just wanted to double check with someone and see if the answer is

3. ### calculus

1) find the indicated limit, if it exist? a) lim x->-2 (x^2 -9)/(x^2+x-2) b) lim x -> -∞ √(ax^2+bx+c)/dx + e, where a > 0, b,c,d, and e are constant.

4. ### Calculus Answer Confirming Not Sure Im Right Help?

Evaluate the lim a. lim x--> 64 (cube root x-4/x-64) (∛x-4)/(x-64) -> 0/0 so then let cube root x = u u-4/u^3-64 u-4/u^3-64 = u-4/u-4(u^2+4u+16) the u-4 cancel each other out leaving lim x->64 = 1/u^2+4u+16 1/64^2+4(64)=16 oddly

1. ### calculus

calculate the lim as x-> pi (cos(x)+1)/(x-pi) using the special limit lim x->0 sinx/x

2. ### Calculus

Find the indicated limits. If the limit does not exist, so state, or use the symbol + ∞ or - ∞. f(x) = { 2 - x if x ≤ 3 { -1 + 3x - x^2 if x > 3 a) lim 3+ f(x) x->3 b) lim 3- f(x) x->3 c) lim f(x) x->3 d) lim ∞ f(x) x->3

3. ### Calculus

Show that limit as n approaches infinity of (1+x/n)^n=e^x for any x>0... Should i use the formula e= lim as x->0 (1+x)^(1/x) or e= lim as x->infinity (1+1/n)^n Am i able to substitute in x/n for x? and then say that e lim x ->0

4. ### No one is helping me :/ ??

If y = 3 is a horizontal asymptote of a rational function, which must be true? lim x→ 3 f(x) = 0