# trigonometry

Prove:
tan2x+sec2x = cosx+sinx/ cosx-sinx

1. 👍 2
2. 👎 0
3. 👁 1,697
1. I am sure you meant :
tan2x+sec2x = (cosx+sinx)/(cosx-sinx)

LS
= sin2x/cos2x + 1/cos2x
= (sin2x +1)/cos2x
= (2sinxcosx + sin^2x + cos^2x)/(cos^2x - sin^2x)
= (sinx + cosx)^2/[(cosx-sinx)(cosx+sinx)]
= (sinx + cosx)/(cosx - sinx)
= RS

Q.E.D.

1. 👍 2
2. 👎 0
2. This time start from the right-hand side by taking advantage of the term cos(x)-sin(x):
(cos(x)+sin(x))/(cos(x)-sin(x))
multiply top and bottom by cos(x)+sin(x)
(cos(x)+sin(x))^sup2;/(cos²(x)-sin²(x)
=(cos²(x)+sin²(x)+2sin(x)cos(x))/(cos²(x)-sin²(x))
=(1+sin(2x))/cos(2x)
=sec(2x)+tan(2x)

1. 👍 2
2. 👎 0
3. Thank you so much Reiny and Mathmate. Both of you guys gave me great ways to solving this problem.

1. 👍 2
2. 👎 1

## Similar Questions

1. ### Maths

If is a n acute angle and tanx=3 4 evaluate cosx-sinx cosx+sinx

2. ### Math

How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x - 2tanxsinx=0 tanx(tanx - 2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX

3. ### Trig.......

I need to prove that the following is true. Thanks (2tanx /1-tan^x)+(1/2cos^2x-1)= (cosx+sinx)/(cosx - sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

1. ### math;)

The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

2. ### Math - Trig - Double Angles

Prove: sin2x / 1 - cos2x = cotx My Attempt: LS: = 2sinxcosx / - 1 - (1 - 2sin^2x) = 2sinxcosx / - 1 + 2sin^2x = cosx / sinx - 1 = cosx / sinx - 1/1 = cosx / sinx - sinx / sinx -- Prove: 2sin(x+y)sin(x-y) = cos2y - cos2x My

3. ### Trig

Verify the identity: tanx(cos2x) = sin2x - tanx Left Side = (sinx/cosx)(2cos^2 x -1) =sinx(2cos^2 x - 1)/cosx Right Side = 2sinx cosx - sinx/cosx =(2sinxcos^2 x - sinx)/cosx =sinx(2cos^2 x -1)/cosx = L.S. Q.E.D.

4. ### Trig Identities

Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /

1. ### Math help again

cos(3π/4+x) + sin (3π/4 -x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx - cos(3π/4)sinx = -1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx - (-1/sqrt2sinx) I canceled out -1/sqrt2cosx and 1/sqrt2cosx Now I have 1/sqrt sinx +

2. ### trigonometry

how do i simplify (secx - cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx) - (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx) - (cos x / sinx) after that i get stuck

3. ### Math

(sinx - cosx)(sinx + cosx) = 2sin^2x -1 I need some tips on trigonometric identities. Why shouldn't I just turn (sinx + cosx) into 1 and would it still have the same identity?

4. ### trigonometry

prove: sinx/sec2x+cosx/csc2x=sin3x