# math

which three statements are true?

a) if x= -10^4 then log 10 = -4
b)if x= 2^8 then log 2x = 8
c) log2 2= 4
d) if x= 3 then log10 3=x
e) log 10 256-2log 10 a/log 10 b
f)log 10 (a-b)= log 10 a/log 10 b
g) the gradient of the graph of y= 2x^x at x= 2 is 2e^e
h) the gradient of the graph of y= e^x at x= 2is 2e

can you explain why? I don't get this

which three statements are true?

a) if x= -10^4 then log 10 = -4
b)if x= 2^8 then log 2x = 8
c) log2 2= 4
d) if x= 3 then log10 3=x
e) log 10 256-2log 10 a/log 10 b
f)log 10 (a-b)= log 10 a/log 10 b
g) the gradient of the graph of y= 2x^x at x= 2 is 2e^e
h) the gradient of the graph of y= e^x at x= 2is 2e

a, b

## Similar Questions

1. ### mathematics -logs

which three statements are true? a) if x= -10^4 then log 10 = -4 b)if x= 2^8 then log 2x = 8 c) log2 2= 4 d) if x= 3 then log10 3=x e) log 10 256-2log 10 a/log 10 b f)log 10 (a-b)= log 10 a/log 10 b g) the gradient of the graph of
2. ### maths

which three statements are true? a) if x= -10^4 then log 10 = -4 b)if x= 2^8 then log 2x = 8 c) log2 2= 4 d) if x= 3 then log10 3=x e) log 10 256-2log 10 a/log 10 b f)log 10 (a-b)= log 10 a/log 10 b g) the gradient of the graph of
3. ### maths

which three statements are true? a) if x= -10^4 then log 10 = -4 b)if x= 2^8 then log 2x = 8 c) log2 2= 4 d) if x= 3 then log10 3=x e) log 10 256-2log 10 a/log 10 b f)log 10 (a-b)= log 10 a/log 10 b g) the gradient of the graph of
4. ### math

Logarithm!!! Select all of the following that are true statements: (a) log(2x) = log(2) + log(x) (b) log(3x) = 3 log(x) (c) log(12y) = 2 log(2) + log(3y) (d) log(5y) = log(20y) – log(4) (e) log(x) = log(5x) – log(5) (f) ln(25)
5. ### math

which 3 are correct a) if x= -10^4 then log10 x = -4 b)if x= 2^8 then log 2x = 8 c) log2 2= 4 d) if x= 3 then log10 3=x e) log 10 256-2log 10 16=0 f)log 10 (a-b)= log 10 a/log 10 b g) the gradient of the graph of y= 2e^x at x= 2
6. ### Mathematics

Prove that log a, log ar, log ar^2 is an a.p. Is the following below correct? Log ar^2 - Log ar= Log ar - Log a hence applying laws of logarithm Log(ar^2/ar) = log(ar/a) Log and log cancels out and then cross-multiply hence a^2r^2
7. ### Math

Are all statements that are true. (a) log(A)/log(B)=In(A)/In(B) (b) In log[b](N), the exponent is N. (c)If 2log[3](81)=8, then log[3](6.561)=8 (d)log[b](N) negative when N is negative. (e)In(x/2)=In(x)/2
8. ### Math

Are all statements that are true. (a) log(A)/log(B)=In(A)/In(B) (b) In log[b](N), the exponent is N. (c)If 2log[3](81)=8, then log[3](6.561)=8 (d)log[b](N) negative when N is negative. (e)In(x/2)=In(x)/2
9. ### Math

solve log(7x-3)+2log(5)=2+log(x+3) I've attempted to do this question and I ended up with log(7-3)+log(5^2)-log(x+3)=2 but I don't what to do next or whether I did something wrong.
10. ### math

write as a single logarithm: -2logbase3(1/x)+(1/3)logbase3(square root of x) please show the steps to solving this. thanx. remember that 1 log (AxB) = log A + Log B (same base) 2 log (A/B) = log A - log B 3 log A^n = n log A use

More Similar Questions