# integral- calc

What is the indefinite integral sin(t)/t dt

1. 👍
2. 👎
3. 👁
1. look at this

1. 👍
2. 👎
2. It's a special function, defined by this integral. Si(t)

1. 👍
2. 👎
👤
oobleck

## Similar Questions

1. ### math

Evaluate the following indefinite integral by using the given substitution to reduce the integral to standard form integral 2(2x+6)^5 dx, u=2x+6

2. ### Integration by Parts

integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be -pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=-cos(t) i integral sin(t)e^(it)dt= -e^(it)cos(t)+i*integral

3. ### Calculus

Find the indefinite integral (integral sign) 3te^2tdt

4. ### Calculus

I am trying to find the integral of e^(6x)sin(7x). Apparently, the answer is (6e^(6x)sin(7x) - 7e^(6x)cos(7x))/85) + C and achieving the answer is mostly understandable since it involves integrating the function in parts... that

1. ### Uni Calculus

After making the appropriate inverse trig substitution x=ag(θ) (where g is a certain trigonometric function), the indefinite integral ∫sin(2θ) dθ is obtained. What integral did we start with?

2. ### calculus

Calculate the indefinite integral: ∫(4x-3/x)dx

3. ### calc 1

Evaluate the indefinite integral. e^(8x)sin(e^(8x))

4. ### Calc

Use substitution to evaluate the indefinite integral: The integral of [ (sq. root (1 + ln x)) ((ln x)/x) dx] Im confused on what i should substitute u and du for. Thank you so much!!

1. ### Calculus

Hello Everyone, I need help with Calc II. 1. Integral from 0 to 1 of (sin(3*pi*t))dt For this one, I got -1/3pi cos (9 pi^2) + 1/3pi 2. indefinite integral of sinxcos(cosx)dx I got sin(cosx) + C 3. Indefinite integral of x over

2. ### calculus

Using an integration formula,what is the indefinite integral of (sign for integral)(cos(4x)+2x^2)(sin(4x)-x)dx. Any help very much appreciated.

3. ### calculus

Evaluate the indefinite integral. integral of 4e^(4x)sin[e^(4x)]dx

4. ### maths

Choose the option that gives an expression for the indefinite integral ʃ (cos(4x) + 2x^2)(sin(4x) − x) dx. In each option, c is an arbitrary constant. Options A cos(4x) + 2x^2 +c B -1/8cos(4x) + 2x^2)^2 +c C 1/4 (sin(4x) −