# Calc 121

Okay, how would you go about finding the area of a curve from 1 to 4, when y=2x+(2/(x^2))?? It's not like the problem I asked before because here, you cannot use substitution. I tried using 2x for u and x^2 for du but it won't simplify into a ln problem or anything that I can work with.

Also, how do you take the derivative/anti-derivative of a fraction like: (3x^2)/(2)?

I really appreciate the help!

## Similar Questions

1. ### Math: Need Answer to study for a quizz. Help ASAP

Estimate the area under the curve f(x)=x^2-4x+5 on [1,3]. Darw the graph and the midpoint rectangles using 8 partitions. Show how to calculate the estimated area by finding the sum of areas of the rectangles. Find the actual area
2. ### ap calc

Each of the following parts relates to finding the area underneath the curve , from x = 1 to x = 3. D. Set up, but do not solve, the Riemann Sum which expresses the exact area underneath the curve.
3. ### Math

Estimate the are under the curve f(x)=x^2-4x+5 on [1,3]. Darw the graph and the midpoint rectangles using 8 partitions. Show how to calculate the estimated area by finding the sum of areas of the rectangles. Find the actual area
4. ### Statistics

A certain curve (that is NOT the normal curve) is shown below. The curve is symmetric around 0, and the total area under the curve is 100%. The area between -1 and 1 is 58%. What is the area to the right of 1? I do not know how to
5. ### Calculus

Integrals: When we solve for area under a curve, we must consider when the curve is under the axis. We would have to split the integral using the zeros that intersect with the axis. Would this be for all integrals? What if we just
6. ### Calculus

Finding area under a curve From [1,3] 2x^2 -4x +1
7. ### Stats

Need help finding the area under the normal curve between z = -1.0 and z = -2.0?
8. ### Calculus

i need help finding area under curve of:2y=sqrt(3x),y=4, and 2y+1x=4
9. ### math

i need help finding area under curve of:2y=sqrt(3x),y=4, and 2y+1x=4
10. ### Calculus

Find the area cut off by x+y=3 from xy=2. I have proceeded as under: y=x/2. Substituting this value we get x+x/2=3 Or x+x/2-3=0 Or x^2-3x+2=0 Or (x-1)(x-2)=0, hence x=1 and x=2 are the points of intersection of the curve xy=2 and
11. ### Calculus

what is Trapezoidal rule? How does it work in finding the area under the curve(s)?

More Similar Questions