# Maths

A farmer finds that the weights of sheep on his farm have a normal distribution with mean 66.4 kg
and standard deviation 5.6 kg.
250 sheep are chosen at random. Estimate the number of sheep which have a weight of between
70 kg and 72.5 kg.

Why there is no use of continuity correction in this question?And please show full solution of the question.

1. 👍 0
2. 👎 0
3. 👁 310
1. This question is referring to your z-scores : )
You need your z score formula z=(x- mean/standard deviation
You will find your z score for 72.5 and then a second z-score of 70
and since the z-score table reads "less than" you will need to subtract the value of z found at 70 from the value of z found at 72.5
This will give you the percent between 70 adn 72.5
then you will have to multiply that percent by your 250 sheep to see how many would be between those weights.

1. 👍 0
2. 👎 0
👩‍🏫
Ms Pi 3.14159265358979323
2. Why can't we use P((72-66.4)/5.6) -(P(69.5-66.4)/5.6)?

1. 👍 0
2. 👎 0
3. If you are still using "tables", take a look at this webpage,
which is probably the best for your type of question.

http://davidmlane.com/normal.html

You can bypass the z-score calculations and use the data
directly as it is given to you, although the z-scores you calculated
can be used as well. As a matter of fact , the default is a mean of 0 and
a SD of 1

Using the data as is, the result is .1221
I clicked on the 'between' button then entered 70 and 72.5

Using the z-scores that "Ms Pi" outlined, you would have....
for 70: z-score = (70-66.4)/5.6 = .642857...
and from your table you should get P(z < 70) = 0.7398
for 72.5" z-score = (72.5-66.4)/5.6 = 1.08928..
and from your table you should get P(z < 72.5) = .862

so P( 70 < x < 72.5) = .862 - .7398 = .1222, same as before

You then ask: Why can't we use P((72-66.4)/5.6) - (P(69.5-66.4)/5.6)??
I don't know where you are getting your last P(69.5-66.4)/5.6) from?
Is 69.5 a typo?
Anyway, that is in effect what I did, let me know if this made sense to you.

1. 👍 0
2. 👎 0
👨‍🏫
Reiny
4. Why do think it is a typo?I made that step intentionally.

1. 👍 0
2. 👎 0
5. And for the P((72-66.4)/5.6), I am getting probability 1.

1. 👍 0
2. 👎 0
6. makes no sense...

for 72.5" z-score = (72.5-66.4)/5.6 = 1.08928..
Now find 1.08928 in your table (or use my webpage)
Here is a table:
https://www.math.arizona.edu/~rsims/ma464/standardnormaltable.pdf
and from your table you should get P(z < 72.5) = .862
The table I gave you should give you .86214, but I had to round 1.08928 to 1.09

1. 👍 0
2. 👎 0
👨‍🏫
Reiny
7. As normal approximation to binomial,shouldn't it be P(X<72) for P(X<72.5) and P(X<69.5) for P(X<70) while continuity correction?

1. 👍 0
2. 👎 0
8. "As normal approximation to binomial,shouldn't it be P(X<72) for P(X<72.5) and P(X<69.5) for P(X<70) while continuity correction?"

Must admit that I don't understand what that procedure is.
The last time I taught this, 35 years ago, I never came across that terminology.

1. 👍 0
2. 👎 0
👨‍🏫
Reiny
9. I just noticed that your same question was properly answered for you at
https://www.jiskha.com/questions/1820564/a-farmer-finds-that-the-weights-of-sheep-on-his-farm-have-a-normal-distribution-with-mean
by two capable tutors.
As was pointed out at the end of these replies, there is no need to mess around with
interpolation between values not given by tables.
Tables are a thing of the past and the webpage that both oobleck and I gave you
is extremely precise, and far superior to any tables.

1. 👍 0
2. 👎 0
👨‍🏫
Reiny
10. You didn't use continuity corrections and my text didn't gave correct answer.It gave 0.13128*250.

1. 👍 0
2. 👎 0
11. I got answer 32.82 people.While rounding off,will it be 32 or 33?

1. 👍 0
2. 👎 0
12. If its 32 then the answer is correct.Please explain how you round off people?

1. 👍 0
2. 👎 0
13. This is getting rather tiresome.

Why are you multiplying 0.13128*250 ?
when you were told the correct answer would be .1222*250 = 30.5

and why are you talking about people, when the question dealt with SHEEP
Of course you would round the 30.5 sheept to 31, geessshh

1. 👍 0
2. 👎 0
👨‍🏫
Reiny
14. So the conclusion is not to use continuity correction.Am i right? Yeah, that was sheep not men.Sorry for that.

1. 👍 0
2. 👎 0

## Similar Questions

1. ### AP Statistics

A family has two cats named Gordo and Flaco. Gordo weighs 15 pounds and Flaco weighs 8 pounds. A cat’s weight is classified as unhealthy if the weight is located in the top 5% or bottom 5% of all cat weights. The distribution of

2. ### statistics

Which of the following statements are correct? a. A normal distribution is any distribution that is not unusual. b. The graph of a normal distribution is bell-shaped. c. If a population has normal ditribution, the mean and the

3. ### math

Conditioned on the result of an unbiased coin flip, the random variables T1,T2,…,Tn are independent and identically distributed, each drawn from a common normal distribution with mean zero. If the result of the coin flip is

4. ### stat

Which of the following statements is true about the t-distribution with k degrees of freedom? i. the t-distribution is symmetric ii. the t-distribution with k degrees of freedom has a smaller variance than the t-distribution with

1. ### Math

The ratio of the number of sheep to the number of horses on a farm is 8:3. If there are 42 horses on the farm, how many sheep are there on the farm? Sheep

2. ### Statistics

As the degrees of freedom for the t-distribution increase, the distribution approaches the value of zero for the mean. the t-distribution. the normal distribution. the F distribution.

3. ### Statistics

Statistics Does the frequency distribution appear to have a normal distribution using a strict interpretation of the relevant criteria? IQ Score------Frequency 50-69----------24 79-89----------228 90-109--------490

4. ### Math

A farmer has the following animals on his farm: 20 goats, 18 cows, 10 sheep and 5 horses. How many horses are there less than cows? How many sheep are there more than goats?

1. ### Statistics

How do I answer: A normal distribution has a standard deviation equal to 39. What is the mean of this normal distribution if the probability of scoring above x = 209 is 0.0228

2. ### statistics

The actual weights of bags of pet food are normally distributed.The mean of the weights is 50.0lb,with a standard deviation of 0.2lb. Sketch a normal cuve for the distribution.Label the x-axis at one,two,and three standard