Probability
- 👍
- 👎
- 👁
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
Respond to this Question
Similar Questions
-
Statistics/probability
The random variable X has a binomial distribution with the probability of a success being 0.2 and the number of independent trials is 15. The random variable xbar is the mean of a random sample of 100 values of X. Find P(xbar -
Probability
PROBLEM 2 Let X and Y be independent random variables, with X uniformly distributed on [0,1] and Y uniformly distributed on [0,2]. Find the PDF fZ(z) of Z = max {X, Y}. 1. For z < 0 or z > 2: fZ(z) = ???? 2. For 0 -
Probability
The joint PMF, pX,Y(x,y), of the random variables X and Y is given by the following table: (see: the science of uncertainty) 1. Find the value of the constant c. c = 0.03571428571428571428 2. Find pX(1). pX(1)= 1/2 3. Consider the -
probability
If two random variables 𝑋 and 𝑌 are independent, which conclusion in the following is not true
-
probability
This figure below describes the joint PDF of the random variables X and Y. These random variables take values in [0,2] and [0,1], respectively. At x=1, the value of the joint PDF is 1/2. (figure belongs to "the science of -
Probability
Let X1 , X2 , X3 be i.i.d. Binomial random variables with parameters n=2 and p=1/2 . Define two new random variables Y1 =X1−X3, Y2 =X2−X3. We further introduce indicator random variables Zi∈{0,1} with Zi=1 if and only if -
math
express this in binomial: 2 4ez (4e-z) the 2 is the square.. can anyone teach me how to do this??? I'm a little unsure what your question is asking for here. Ordinarily, a binomial is an expression with two variables and some -
Statistics
Suppose in a carnival game, there are six identical boxes, one of which contains a prize. A contestant wins the prize by selecting the box containing it. Before each game, the old prize is removed and another prize is placed at
-
Statistics
Z1,Z2,…,Zn,… is a sequence of random variables that converge in distribution to another random variable Z ; Y1,Y2,…,Yn,… is a sequence of random variables each of which takes value in the interval (0,1) , and which -
probablity
Let X,Y,Z be independent discrete random variables with E[X]=2, E[Y]=0, E[Z]=0, E[X^2]=20, E[Y^2]=E[Y^2]=16, and Var(X)=Var(Y)=Var(Z)= 16. Let A=X(Y+Z) and B=XY. 1.Find E[B]. 2.Find Var(B). 3.Find E[AB]. 4. are A and B -
math, probability
Let X and Y be independent random variables, uniformly distributed on [0,1] . Let U=min{X,Y} and V=max{X,Y} . Let a=E[UV] and b=E[V] 1. Find a 2. Find b 3. Find Cov(U,V) . You can give either a numerical answer or a symbolic -
Probability
For each of the following sequences, determine the value to which it converges in probability. (a) Let X1,X2,… be independent continuous random variables, each uniformly distributed between −1 and 1. Let
Still need help? You can ask a new question.