In △ABC, m∠A=α, m∠B=β, m∠C=γ. AB=c, AC=b, BC=a. Find the remaining parts of each triangle if the following parts are given.

a) a=4.60, b=3.10, α=18º. Find: c≈__, β≈__, γ≈__
b) a=5.24, b=4.44, β=48º. Find: c≈ __, α≈ ___, γ≈ __

a) sinA/a = sinB/b

Now you have α and β, so γ is easy
the use the law of sines again to get c.

b) same method. Use law of sines

Ty

a) Given a=4.60, b=3.10, and α=18º, we need to find c, β, and γ.

To find c, we can use the Law of Cosines:

c² = a² + b² - 2ab cos(α)

Substituting the given values:

c² = (4.60)² + (3.10)² - 2(4.60)(3.10) cos(18º)

Solving for c:

c ≈ √[(4.60)² + (3.10)² - 2(4.60)(3.10) cos(18º)]

Now, to find β, we can use the Law of Sines:

sin(β) / b = sin(α) / a

Substituting the given values:

sin(β) / 3.10 = sin(18º) / 4.60

Solving for sin(β), and then β:

sin(β) ≈ (3.10 * sin(18º)) / 4.60

β ≈ sin⁻¹((3.10 * sin(18º)) / 4.60)

Lastly, to find γ, we can use the fact that the angles in a triangle add up to 180º:

γ ≈ 180º - α - β

b) Given a=5.24, b=4.44, and β=48º, we need to find c, α, and γ.

To find c, we can use the Law of Cosines:

c² = a² + b² - 2ab cos(β)

Substituting the given values:

c² = (5.24)² + (4.44)² - 2(5.24)(4.44) cos(48º)

Solving for c:

c ≈ √[(5.24)² + (4.44)² - 2(5.24)(4.44) cos(48º)]

Now, to find α, we can use the Law of Sines:

sin(α) / a = sin(β) / c

Substituting the given values:

sin(α) / 5.24 = sin(48º) / c

Solving for sin(α), and then α:

sin(α) ≈ (5.24 * sin(48º)) / c

α ≈ sin⁻¹((5.24 * sin(48º)) / c)

Lastly, to find γ, we can use the fact that the angles in a triangle add up to 180º:

γ ≈ 180º - α - β

To find the remaining parts of each triangle, it is necessary to use the properties and formulas of triangles, specifically the Law of Cosines and the Law of Sines.

a) Given a=4.60, b=3.10, and α=18º, we need to find c, β, and γ.

1. To find c, we can use the Law of Cosines, which states that c² = a² + b² - 2ab cos(γ). Rearranging the formula, we have cos(γ) = (a² + b² - c²) / (2ab).

Using the given values and α, we can substitute them into the equation:
cos(γ) = (4.60² + 3.10² - c²) / (2 * 4.60 * 3.10)

2. Now we can find γ using the inverse cosine function (cos⁻¹).
γ ≈ cos⁻¹ [(4.60² + 3.10² - c²) / (2 * 4.60 * 3.10)]

3. To find β, we can use the Law of Sines, which states that sin(β) / b = sin(γ) / c.
Substituting in the known values, we get sin(β) / 3.10 = sin(γ) / c.

We can now solve for β using the equation:
β ≈ sin⁻¹ [(3.10 * sin(γ)) / c]

b) Given a=5.24, b=4.44, and β=48º, we need to find c, α, and γ.

1. To find c, we can again use the Law of Cosines: c² = a² + b² - 2ab cos(γ).
Substituting the known values, we have c² = 5.24² + 4.44² - 2 * 5.24 * 4.44 * cos(γ).

2. To find γ, we can rearrange the equation and use the inverse cosine function:
γ ≈ cos⁻¹ [(5.24² + 4.44² - c²) / (2 * 5.24 * 4.44)]

3. Lastly, to find α, we can use the Law of Sines: sin(α) / a = sin(γ) / c.
Substituting the known values, we get sin(α) / 5.24 = sin(γ) / c.

We can now solve for α:
α ≈ sin⁻¹ [(5.24 * sin(γ)) / c]

To find approximate values for c, β, γ, α, we can plug the known values into the respective equations and calculate the results.