Calculus
- 👍
- 👎
- 👁
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
👤oobleck -
- 👍
- 👎
- ℹ️
- 🚩
Respond to this Question
Similar Questions
-
math
Let f be the function with f(0) = 1/ (pi)^2, f(2) = 1/(pi)^2, and the derivative given by f'(x) = (x+1)cos ((pi)(x)). How many values of x in the open interval (0, 2) satisfy the conclusion of the Mean Value Theorem for the
-
Calculus
The function f is continuous on the interval [4, 15], with some of its values given in the table above. Estimate the average value of the function with a Right Rectangle Approximation, using the 4 intervals between those given
-
Calculus
1. The graph of f ′′(x) is continuous and decreasing with an x-intercept at x = –3. Which of the following statements must be true? A. The graph of f is always concave down. B. The graph of f has an inflection point at x =
-
Calculus
The function f is continuous on the interval [3, 13] with selected values of x and f(x) given in the table below. Use the data in the table to approximate f '(3.5) x 3 4 7 10 13 f(x) 2 8 10 12 22
-
Calculus
A particle moves on the x-axis so that its position is continuous on the interval [3, 13] with some of its values for its velocity v(t) given in the table below. Use a right hand sum with 4 intervals to approximate the total
-
calculus
The function f is continuous on the closed interval [0,2] and has values that are given in the table below x = 0| 1 | 2 ____________ f(x) = 1| k | 2 The equation f(x) = 1/2 must have at least two solutions in the interval [0,2] if
-
Calculus
The function f is continuous on the interval [2, 10] with some of its values given in the table below. Use a trapezoidal approximation with 4 trapezoids to approximate of integral from 2 to 10 f(x)dx x 2 4 7 9 10 f(x) 0 3 8 15 18
-
calculus
The function f is continuous on the closed interval [0,6] and has values that are given in the table below. x |0|2|4|6 f(x)|4|K|8|12 The trapezoidal approximation for(the integral): 6 S f(x) dx 1 found with 3 subintervals of equal
-
Calculus
The function is continuous on the interval [10, 20] with some of its values given in the table above. Estimate the average value of the function with a Trapezoidal Sum Approximation, using the intervals between those given points.
-
Statistics
State whether the data described below are discrete or continuous, and explain why. The number of pieces of mail a person receives each day. A. The data are discrete because the data can take on any value in an interval. B. The
-
Math
Find the average value of the function over the given interval and all values of x in the interval for which the function equals its average value. f(x) = 4x3 − 3x2, [−1, 2]
-
Calculus
f is a continuous function with a domain [−3, 9] such that f(x)= 3 , -3 ≤ x < 0 -x+3 , 0 ≤ x ≤ 6 -3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=-2 b=x On what interval is g increasing? Justify your answer. For 0 ≤ x