calculus

Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval?
f(x) = x3 + x − 9, [0, 2]

  1. 👍
  2. 👎
  3. 👁
  1. Well, the short answer is yes, because the function is continuous and continuously differentiable.
    However you probably want to find a point in the interval where the tangent slope is the same as the slope of the line between end points
    so
    (0 , -9) to (2, 0)
    slope = (0 - -9) / 2 = 4.5
    where does dy/dx = 4.5 ?
    dy/dx = 3 x^2 + 1
    4.5 = 3 x^2 + 1
    x^2 = 3.5/ 3
    yes, x is between 0 and 2

    1. 👍
    2. 👎
    👤
    Damon

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) =

  2. math

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) = 5 −

  3. Calculus

    Which of the following functions does not satisfy the conditions of the Mean Value Theorem on the interval [-1, 1]? a. 5th root of x b. 2x arccosx c. x/(x - 3) d. sqrt(x + 1)

  4. Math11

    Hello, I don't know how to do this, please help. Thank you. 1).Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 5x2 − 3x + 2, [0, 2] Yes, it does not matter if f is continuous or

  1. Calculus

    Determine if Rolle's Theorem applies to the given function f(x)=2 cos(x) on [0, pi]. If so, find all numbers c on the interval that satisfy the theorem.

  2. math

    Let f be the function with f(0) = 1/ (pi)^2, f(2) = 1/(pi)^2, and the derivative given by f'(x) = (x+1)cos ((pi)(x)). How many values of x in the open interval (0, 2) satisfy the conclusion of the Mean Value Theorem for the

  3. Calculus

    18) Find all numbers c that satisfy the conclusion of the Mean Value Theorem for the following function and interval. Enter the values in increasing order and enter N in any blanks you don't need to use. f(x)=2x/6x+12,[1,4]

  4. Calc

    Given function f defined by f(x) = ( 1- x)³. What are all values of c, in the closed interval [0,3], that satisfy the conditions of the Mean Value Theorem?

  1. calculus

    Find the values of c that satisfy the Mean Value Theorem for f(x)=6/x-3 on the interval [-1,2]. Is it no value of c in that interval because the function is not continuous on that interval???

  2. mathematics , calculus

    verify that the function satisfies the hypotheses of the mean value theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle’s Theorem. f(x)=√x-1/3 x,[0,9]

  3. Calculus Help Please!!!

    does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 2x^2 − 5x + 1, [0, 2] If it satisfies the hypotheses, find all numbers c that satisfy the conclusion of the Mean Value Theorem.

  4. Calculus

    1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2]. 2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be

You can view more similar questions or ask a new question.