Calc 3

The region W is the cone shown below.
The angle at the vertex is 2π/3, and the top is flat and at a height of 5/sqrt(3). Write the limits of integration for ∫WdV in the following coordinates (do not reduce the domain of integration by taking advantage of symmetry):
(a) Cartesian:
(b) Cylindrical:
(c) Spherical:

  1. 👍 0
  2. 👎 0
  3. 👁 77
asked by ally
  1. The cone has a top radius of 5.
    In Cartesian coordinates, z^2 = (x^2+y^2)/6
    ∫W dV = ∫[-5,5]∫[-√(25-x^2),√(25-x^2) ∫[0,√((x^2+y^2)/6)] dz dy dz
    In cylindrical coordinates,
    ∫[0,2π] ∫[0,5] ∫[0,r/√3] r dz dr dØ
    In spherical coordinates, don't recall the transformations right off, but I'm sure your text has examples. I'll have to think on it a bit.

    1. 👍 0
    2. 👎 0
    posted by oobleck

Respond to this Question

First Name

Your Response

Similar Questions

  1. Maths

    A right circular cone is circumscribed about a sphere of radius a .If h is the distance from the centre of the sphere to the vertex of the cone. Show that the volume of the cone is 1/3pi a^2(a+h)^2/(h-a). Find the angle of a cone

    asked by Joel on August 9, 2016
  2. Physics (cone in water) buoyancy

    h ttps ://s.yimg . com /hd/ answers /i /23e5f0847 ba74d75b223556433442f6f_A.jpeg?a=answers&mr= 0&x=1442542068&s =0f4a516a 3f24689d44f 28091e846bb0d link to see part a answer and an image of what is problem is. A cone of density

    asked by Jason on September 17, 2015
  3. Calculus

    Given a right circular cone, you put an upside-down cone inside it so that its vertex is at the center of the base of the larger cone, and its base is parallel to the base of the larger cone. If you choose the upside-down cone to

    asked by Mishaka on December 16, 2011
  4. Calculus: Optimization

    I have no idea how to approach this problem, if someone knows just how to relate h, r with H,R, that would be extremely helpful and I can workout the rest! Thank you in advance. Given a right circular cone, you put an upside-down

    asked by Jazz on February 17, 2015
  5. Maths

    A right circular cone of base radius 5 cm and depth 20 cm is held with its vertex downwards. If water is leaking through a small hole in the vertex at the rate of 8 cm^3/s, find the rate of change of the water level in the cone

    asked by Mary on January 7, 2017
  6. math

    A cone is made from the figure shown by joining the straight edges and securing them with tape, calculate the angle of inclination, to the nearest tenth of a degree, for the side of the cone.

    asked by Anonymous on November 24, 2014
  7. math

    Two right circular cone, one upside down in the other. The two bases are parallel. The vertex of the smaller cone lies at the center of the larger cone’s base. The larger cone’s height and base radius are 12 and 16 ft,

    asked by rolan on August 13, 2012
  8. calculus

    Given a right circular cone, you put an upside-down cone inside it so that its vertex is at the center of the base of the larger cone, and its base is parallel to the base of the larger cone. If you choose the upside-down cone to

    asked by Mari on January 21, 2012
  9. Math

    A small cone has a vertex touching the base of a large cone. The base of the small cone is parallel to the base of the larger cone. a.) Find h and r so that the smaller cone has a maximum volume. b.) State the maximum volume c.)

    asked by Kate on April 20, 2019
  10. Calculus

    A container in the form of a right circular cone of height 16 cm and base radius 4 cm is held vertex downward and filled with liquid. If the liquid leaks out from the vertex at a rate of 4 cm^3/s, find the rate of change of the

    asked by Helga on November 21, 2011

More Similar Questions