Calculus
- 👍
- 👎
- 👁
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
Respond to this Question
Similar Questions
-
calclus
Set up, but do not evaluate, a definite integral representing the volume of the solid formed by revolving the region of the plane bounded by the curves y = e x , x = 0 and y = e about the line x = 1 using the disk/washer method. -
Calculus
Find the volume of the solid formed by rotating the region enclosed by y=e^(1x)+4 y=0 x=0 x=0.3 about the x-axis. I attempted this problem numerous time and kept on getting 5.501779941pi, using the formale integral of pi(r^2) -
Calculus
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y= 2e^(−x), y= 2, x= 6; about y = 4. How exactly do you set up the integral? I know that I am supposed to use -
calculus
the region bounded by the graph f(x)=x(2-x) and the x axis is revolved about the y axis. Find the volume of the solid. I did the integral using the shell method, but the answer wasn't correct.
-
Calculus
The functions f and g are given by f(x)=√x and g(x)=6-x. Let R be the region bounded by the x-axis and the graphs of f and g, as shown in the figure in the link below. Please show your work. h t t p://goo.gl/jXIZD 1. Find the -
Calculus
1. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line x = 6. y = x, y = 0, y = 5, x = 6 2. Use the method of cylindrical shells to find the volume V generated by -
Calculus AB
Consider the region bounded by the graphs of the equations x=y^2 and y=3x. Set up 2 integrals, one with respect to x and the other with respect to y, both of which compute the volume of the solid obtained by rotating this region -
calculus showed work
find the area of the rgion bounded by the graphs of y=x^3-2x and g(x)=-x i drew the graph and half of the graph is above the xaxis and the other half is below the axis. so the integrals i came up with are two because i broke them
-
Calculus Please Check my answer
Set up, but do not evaluate, the integral which gives the volume when the region bounded by the curves y = Ln(x), y = 1, and x = 1 is revolved around the line y = -1. ANSWER: v = ∫[1,e] π(4-(lnx+1)^2) dx -
calculus review please help!
Write the integral in one variable to find the volume of the solid obtained by rotating the first‐quadrant region bounded by y = 0.5x2 and y = x about the line x = 5. Use the mid-point rule with n = 4 to approximate the area of -
Calculus check
The functions f and g are given by f(x)=sqrt(x^3) and g(x)=16-2x. Let R be the region bounded by the x-axis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write, -
Math
Let R be the region bounded by the following curves. Use the disk (washer) method to find the volume of the solid generated when R is revolved about the y-axis. y=x, y=3x, y=6 Set up the integral that gives the volume of the
Still need help? You can ask a new question.