# Further maths

If x is an acute angle, tanx =3/4,evaluate coax _sinx÷cosx+sinx

1. 👍 0
2. 👎 0
3. 👁 49
1. geez - take care with your expressions.
divide top and bottom by cosx, Then you have
(cosx-sinx)/(cosx+sinx) = (1-tanx)/(1+tanx) = (1/4)/(7/4) = 1/7
extra credit: why does it matter that x is acute?

1. 👍 0
2. 👎 0
posted by oobleck

## Similar Questions

1. ### Trigonometry Check

Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] =

asked by Anonymous on February 20, 2012
2. ### maths - trigonometry

I've asked about this same question before, and someone gave me the way to finish, which I understand to some extent. I need help figuring out what they did in the second step though. How they got to the third step from the

asked by anonymous on June 19, 2010
3. ### Maths

If is a n acute angle and tanx=3 4 evaluate cosx-sinx cosx+sinx

asked by Anonymous on May 27, 2013
4. ### Maths

If is a n acute angle and tanx=3 4 evaluate cosx-sinx cosx+sinx

asked by Anonymous on May 27, 2013
5. ### Maths

If is a n acute angle and tanx=3 4 evaluate cosx-sinx cosx+sinx

asked by Anonymous on May 27, 2013
6. ### Maths

If is a n acute angle and tanx=3 4 evaluate cosx-sinx cosx+sinx

asked by Anonymous on May 27, 2013
7. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 -

asked by Dave on January 2, 2007
8. ### Simplifying with Trigonometry Identities

Hi, I am a senior in High School having a really difficult time with two problems. I have to prove using the trigonometric identities that they equal each other but I am having a really hard time trying to get them to equal each

asked by amanda on March 7, 2007
9. ### Calculus

Q: If y=sinx/(1+tanx), find value of x not greater than pi, corresponding to maxima or minima value of y. I have proceeded thus- Equating dy/dx=0 we get{ (1+tanx)cosx-sinx.sec^2 x}/(1+tanx)^2=0……..(A) Or cosx+sinx=sinx.sec^2 x

asked by MS on June 16, 2014
10. ### Math

Im really struggling with these proving identities problems can somebody please show me how to do these? I'm only aloud to manipulate one side of the equation and it has to equal the other side of the equation at the end Problem

asked by Alycia on November 1, 2012

More Similar Questions