Trig
 👍
 👎
 👁

 👍
 👎

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

d/dx
d/dx( ln sin(pi/x) ) = ? Thanks. If those are absolute value signs, the derivative will not exist when sin (pi/x) = 0, because of the sign change that occurs there. Assume sin (pi/x) > 0 Let u(x) = pi/x and v(x) = sin x, and use

calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

Trig
Sin(Xy)sin(x+y)=sin^2 x  sin^2 y work on one side only...so i worked on the right =(sinxsiny)(sinx+siny) does that equal sin(xy)sin(x+y)??? help!

Calculus
Which of the following definite integrals could be used to calculate the total area bounded by the graph of y = sin(x), the xaxis, x = 0, and x = π a) ∫ from π to 0 sin(x)dx b) ∫ from π to 0 sin(x)dx c) 2∫ from π to 0

Trig
Find sin(s+t) and (st) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(1/5)Sin(3/5) = 0.389418 Sin(st) =sin(s)cos(t)  cos(s)sin(t) =sin(3/5)cos(1/5) 

Pre calc
Find sin(2x), cos(2x), and tan(2x) from the given information. sin(x) = 5/13, x in Quadrant I sin(2x)? cos(2x)? tan(2x)? I honeslty just need one good example of how to do these please show all work and finalize answer

Trig
4. Asked to simplify the expression sin(180−è), Rory volunteered the following solution: sin(180−è) = sin 180−sin è, and, because sin 180 is zero, it follows that sin(180−è) is the same as −sin è. Is this answer

Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

maths
Prove: sin^212+sin^221+sin^239+sin^248=1+sin^29+sin^218

calculus/Trig
Suppose you wish to express sin(3t) in terms of sint and cost. Apply the sum formula to sin(3t) = sin(t+2t) to obtain an expression that contains sin(2t)=sin(t+t) and cos(2t)=cos(t+t). Apply the sum formulas to those two

calculus
Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(sin x)  (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

CALCULUS LIMITS
What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of
You can view more similar questions or ask a new question.