# Calculus

Find the area of the region bounded by the curves y = sin^-1(x/4) , y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative.

1. 👍
2. 👎
3. 👁
1. Note that x=4siny and you want the area "above" the curve
a = ∫[0,pi/2] 4-4siny dy = 4y+4cosy [0,pi/2] = 2pi-4

1. 👍
2. 👎

## Similar Questions

1. ### Math

Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 8 sin x, y = 8 cos x, 0 ≤ x ≤ π/4; about y = −1

2. ### calculus

1. Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = ln(5x), y = 1, y = 3, x = 0; about the y-axis 2. Use the method of cylindrical shells to find the volume V

3. ### calculus

1. Find the volume V obtained by rotating the region bounded by the curves about the given axis. y = sin(x), y = 0, π/2 ≤ x ≤ π; about the x−axis 2. Find the volume V obtained by rotating the region bounded by the curves

4. ### Calculus

Find the area of the region bounded by the curves y = sin x, y = csc^2x, x = pi/4, and x = (3pi)/4.

1. ### calculus

Find the number b such that the line y = b divides the region bounded by the curves y = 16x2 and y = 9 into two regions with equal area. (Round your answer to two decimal places.)

2. ### CALCULUS

Sketch the region enclosed by the given curves. y = tan 3x, y = 2 sin 3x, −π/9 ≤ x ≤ π/9 then then find the area. i can sketch but cant find correct area

3. ### calculus

Let A be the region bounded by the curves y=x^2-6x+8 and y=0, find the volume when A is revolved around the x-axis

4. ### Calculus

Find the area of the region bounded by the curves y=12-x^2 and y=x^2-6. Hint:The answer should be a whole number.

1. ### calculus 2

Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves. (Round your answer to two decimal places.) y = 8x^2− 3x, y

2. ### Calculus

Find the area of the region bounded by the curves y = x^(-1/2), y = x^(–2), y = 1, and y = 3. a) (1/2)(3)^1/2 + (4/3) b) 2*(3)^1/2 - (8/3) c) (1/2)(3)^1/2 - (32/3) d) 2*(3)^1/2 - (32/3) e) (8/3) - 2*(3)^1/2 So one thing that is

3. ### Calculus (Area Between Curves)

Find the area of the region bounded by the curves y^2=x, y-4=x, y=-2 and y=1 (Hint: You'll definitely have to sketch this one on paper first.) You get: a.) 27/2 b.) 22/3 c.) 33/2 d.) 34/3 e.) 14