Calculus

Find the area of the region bounded by the curves y = sin^-1(x/4) , y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative.

  1. 👍
  2. 👎
  3. 👁
  1. Note that x=4siny and you want the area "above" the curve
    a = ∫[0,pi/2] 4-4siny dy = 4y+4cosy [0,pi/2] = 2pi-4

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 8 sin x, y = 8 cos x, 0 ≤ x ≤ π/4; about y = −1

  2. calculus

    1. Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = ln(5x), y = 1, y = 3, x = 0; about the y-axis 2. Use the method of cylindrical shells to find the volume V

  3. calculus

    1. Find the volume V obtained by rotating the region bounded by the curves about the given axis. y = sin(x), y = 0, π/2 ≤ x ≤ π; about the x−axis 2. Find the volume V obtained by rotating the region bounded by the curves

  4. Calculus

    Find the area of the region bounded by the curves y = sin x, y = csc^2x, x = pi/4, and x = (3pi)/4.

  1. calculus

    Find the number b such that the line y = b divides the region bounded by the curves y = 16x2 and y = 9 into two regions with equal area. (Round your answer to two decimal places.)

  2. CALCULUS

    Sketch the region enclosed by the given curves. y = tan 3x, y = 2 sin 3x, −π/9 ≤ x ≤ π/9 then then find the area. i can sketch but cant find correct area

  3. calculus

    Let A be the region bounded by the curves y=x^2-6x+8 and y=0, find the volume when A is revolved around the x-axis

  4. Calculus

    Find the area of the region bounded by the curves y=12-x^2 and y=x^2-6. Hint:The answer should be a whole number.

  1. calculus 2

    Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves. (Round your answer to two decimal places.) y = 8x^2− 3x, y

  2. Calculus

    Find the area of the region bounded by the curves y = x^(-1/2), y = x^(–2), y = 1, and y = 3. a) (1/2)(3)^1/2 + (4/3) b) 2*(3)^1/2 - (8/3) c) (1/2)(3)^1/2 - (32/3) d) 2*(3)^1/2 - (32/3) e) (8/3) - 2*(3)^1/2 So one thing that is

  3. Calculus (Area Between Curves)

    Find the area of the region bounded by the curves y^2=x, y-4=x, y=-2 and y=1 (Hint: You'll definitely have to sketch this one on paper first.) You get: a.) 27/2 b.) 22/3 c.) 33/2 d.) 34/3 e.) 14

  4. calculus review please help!

    1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate,

You can view more similar questions or ask a new question.