# Calculus

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.)
f(x) = sqrt(x) − (1/9)x, [0, 81]
c=?

1. 👍
2. 👎
3. 👁
1. f(0)=0
f(9)=0
So, that satisfies the theorem
f is continuous and differentiable.

So, we just have to find c such that f'(c)=0
f'(x) = 1/(2√x) - 1/9
1/(2√c) - 1/9 = 0
1/(2√c) = 1/9
2√c = 9
c = 81/4 which is in [0,81]

1. 👍
2. 👎

## Similar Questions

1. ### math

Let f be the function with f(0) = 1/ (pi)^2, f(2) = 1/(pi)^2, and the derivative given by f'(x) = (x+1)cos ((pi)(x)). How many values of x in the open interval (0, 2) satisfy the conclusion of the Mean Value Theorem for the

2. ### Calculus-Math

The ordering and transportation cost C for components used in a manufacturing process is approximated by the function below, where C is measured in thousands of dollars and x is the order size in hundreds. C(x) =

3. ### Calculus

Rolle's theorem cannot be applied t the function f(x)= ln(x+2) on the interval [-1,2] because a) f is not differentiable on the interval [-1,2] b) f(-1)≠ f(2) c) All of these d) Rolle's theorem can be applied to f(x)= ln(x+2) on

4. ### calculus

Find the values of c that satisfy the Mean Value Theorem for f(x)=6/x-3 on the interval [-1,2]. Is it no value of c in that interval because the function is not continuous on that interval???

1. ### Calculus

Rolle's theorem cannot be applied t the function f(x)= ln(x+2) on the interval [-1,2] because a) f is not differentiable on the interval [-1,2] b) f(-1)≠ f(2) c) All of these d) Rolle's theorem can be applied to f(x)= ln(x+2) on

2. ### Calculus

Determine if the Mean Value Theorem for Integrals applies to the function f(x)=2-x^2 on the interval [0,√2). If so, find the x-coordinates of the point(s) guaranteed by the theorem a) No, the Mean Value Theorem for Integrals

3. ### Math

Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. (Select all that apply.) f (x) = sin(x), [0, 2π] If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f

4. ### Calculus

Given f(x) = -1/x, find all c in the interval [-3, -½] that satisfies the Mean Value Theorem. A. c= -sqrt(3/2) B. c= +or- sqrt(3/2) C. The Mean Value Theorem doesn’t apply because f is not continuous at x=0 D. The Mean Value

1. ### math

Consider the function f ( x ) = 3x^3 − 3x on the interval [ − 4 , 4 ] . Find the average or mean slope of the function on this interval. By the Mean Value Theorem, we know there exists at least one c in the open interval ( −

2. ### Calculus

Verify the conditions for Rolle's Theorem for the function f(x)=x^2/(8x-15) on the interval [3,5] and find c in this interval such that f'(c)=0 I verified that f(a)=f(b) and calculated f'(x)= (8x^2 -30x)/64x^2 -240x +225) But I'm

3. ### Calculus

1. Locate the absolute extrema of the function f(x)=cos(pi*x) on the closed interval [0,1/2]. 2. Determine whether Rolle's Theorem applied to the function f(x)=x^2+6x+8 on the closed interval[-4,-2]. If Rolle's Theorem can be

4. ### Calculus

1. Construct a function f(x) that satisfies the following conditions: I. Its domain is all real numbers. II. It has no maximum and no minimum on the interval [ 1,3] . III. It satisfies f(1) = 1 and f(3) = –1, but there does not