Physics

An ideal massless spring is fixed to the wall at one end. A block of mass M attached to the other end of the spring oscillates with amplitude A on a frictionless, horizontal surface. The maximum speed of the block is V_m. The force constant of the spring is
a)Mg/A
b)MgV_m/2A
c)MV_m^2/2A
d)MV_m^2/A^2
e)MV_m^2/2A^2

I have narrowed down the choses to either c) d) or e). I don't really get this question.

The max KE of the block is 1/2Mv^2. The max PE of the spring is 1/2 k A^2
set them equal, and solve for k.

  1. 👍 1
  2. 👎 1
  3. 👁 2,221
  1. adsvu njgoedfw djckavn avrf gwboe abdsjwnz esnomhpc

    1. 👍 4
    2. 👎 8
  2. Because of conservation of energy, kinetic energy K is equal to the potential energy of the spring: K = U. So (mv^2)/2 = (kA^2)/2. Solving for k, we have k = (mv^2)/A^2, which is d).

    1. 👍 4
    2. 👎 1

Respond to this Question

First Name

Your Response

Similar Questions

  1. Physics

    Block 1, of mass m1 = 0.650kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0∘ and a coefficient of kinetic friction between block 2 and the plane of μ

  2. Physics

    A 5.00-kg object is attached to one end of a horizontal spring that has a negligible mass and a spring constant of 420 N/m. The other end of the spring is fixed to a wall. The spring is compressed by 10.0 cm from its equilibrium

  3. physics

    In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the

  4. Physics

    Two identical massless springs are hung from a horizontal support. A block of mass 3.2 kg is suspended from the pair of springs.The acceleration of gravity is 9.8 m/s^2. When the block is in equilibrium, each spring is stretched

  1. Physics Spring

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the

  2. physics

    A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. You

  3. physics

    a 4.0-kg block is moving at 5.0 m/s along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of 0.68 m. )

  4. physics

    To measure the static friction coefficient between a 1.6-kg block and a vertical wall, the setup shown in the drawing is used. A spring (spring constant = 400 N/m) is attached to the block. Someone pushes on the end of the spring

  1. Physics

    A 0.500 kg block is sitting on a horizontal, frictionless surface. The block is connected to a horizontal spring with a force constant of 124 N/m. The other end of the horizontal spring rests against a wall. When a 100.0 g arrow

  2. Physics

    You have been asked to design a "ballistic spring system" to measure the speed of bullets. A bullet of mass m is fired into a block of mass M. The block, with the embedded bullet, then slides across a frictionless table and

  3. Physics

    Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes over a frictionless, massless pulley. Block B hangs down vertically. When the two blocks are released, Block B accelerates

  4. physics

    A physics student pulls a block of mass m = 23 kg up an incline at a slow constant velocity for a distance of d = 4 m. The incline makes an angle q = 25° with the horizontal. The coefficient of kinetic friction between the block

You can view more similar questions or ask a new question.