Physics

An 80g particle moving with an initial velocity of (50m/s)î strikes and sticks to a 60g particle moving at (50m/s)j. How much kinetic energy is lost in this collision?

  1. 👍
  2. 👎
  3. 👁
  1. M1*V1 + M2*V2 = M1*V + M2*V
    0.08*50i+0.06*50j = 0.08V+0.06V.
    4i + 3j = 0.14V.
    5[36.9o] = 0.14V,
    V = 35.7m/s[36.9o].

    KE before the collision:
    KE1 = 0.5M1*V1^2 + 0.5M2V2^2.
    i^2 = 1, j^2 = 1.

    KE after the collision:
    KE2 = 0.5M1*V^2 + 0.5M2*V^2.

    KE(Lost) = KE1-KE2.

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    a particle starts at time t = 0 and moves along the x axis so that its position at any time t>= 0 is given by x(t) = ((t-1)^3)(2t-3) a.find the velocity of the particle at any time t>= 0 b. for what values of t is the velocity of

  2. physics

    Two forces, 1 = (3.85 − 2.85) N and 2 = (2.95 − 3.65) N, act on a particle of mass 2.10 kg that is initially at rest at coordinates (−2.30 m, −3.60 m). (a) What are the components of the particle's velocity at t = 11.8 s?

  3. Physics

    The velocity graph of a particle moving along the x-axis is shown. The particle has zero velocity at t=0.00s and reaches a maximum velocity, vmax, after a total elapsed time, t total. If the initial position of the particle is x0

  4. Calculus

    The position of a particle moving along the x-axis at time t > 0 seconds is given by the function x(t) = e ^ t - 2t feet. a) Find the average velocity of the particel over the interval [1,3]. b) In what direction and how fast is

  1. Calculus

    The Question: A particle moves along the X-axis so that at time t > or equal to 0 its position is given by x(t) = cos(√t). What is the velocity of the particle at the first instance the particle is at the origin? So far I was

  2. Physics (4)

    A 4.0-kg particle is moving horizontally with a speed of 5.0 m/s when it strikes a vertical wall. The particle rebounds with a speed of 3.0 m/s. What is the magnitude of the impulse delivered to the particle?

  3. AP Calculus

    The position of a particle moving on the x-axis at time t>0 seconds is: x(t)= e^t - t^1/2. a) Find the average velocity of the particel over the interval [1,3]. b) In what direction and how fast is the particle moving at t= 1

  4. Calculus

    At time t >or= to 0, the position of a particle moving along the x-axis is given by x(t)= (t^3/3)+2t+2. For what value of t in the interval [0,3] will the instantaneous velocity of the particle equal the average velocity of the

  1. math

    The acceleration of a particle at a time t moving along the x-axis is give by: a(t) = 4e^(2t). At the instant when t=0, the particle is at the point x=2, moving with velocity v(t)=-2. Find the position of the particle at t=1/2 if

  2. Calculus

    Sorry this is really long. Just wondering how I would do each of these A particle is moving with velocity v(t) = t^2 – 9t + 18 with distance, s measured in meters, left or right of zero, and t measured in seconds, with t between

  3. physics

    A particle has an acceleration of +6.24 m/s2 for 0.300 s. At the end of this time the particle's velocity is +9.81 m/s. What was the particle's initial velocity?

  4. physics

    The position of a particle moving along an x axis is given by x = 15t2 - 2.0t3, where x is in meters and t is in seconds. (a) Determine the position, velocity, and acceleration of the particle at t = 3.0 s. x = m v = m/s a = m/s2

You can view more similar questions or ask a new question.