Linear Algebra

Hello, could anyone help me with this excersise of linear algebra, Please?
Well it's about linear transformation defined as T:V--W , the excersices give me a set of linearly independent vectors of V {v1,v2, v3... vk} and then asks :
Are {W1, w2, w3, ...wk}, the linear transformation of v1, v2,.. , also linearly independent?
How can I demonstrate that?

1. google the topic. You will find many good discussions, such as this one:

http://math.stackexchange.com/questions/584132/proof-of-linear-independence-of-vectors-after-applying-a-linear-transformation

posted by Steve

First Name

Similar Questions

1. algebra

If v1,...,v4 are in R^4 and v3 is not a linear combination of v1, v2, v4 then {v1, v2, v3, v4] is linearly independent. Is this true or false? Why? If v1,...,v4 are in R^4 and v3 is not a linear combination of v1, v2, v4 then {v1,
2. Linear Algebra

a)Let v be a fixed vector in R^3. Show that the transformation defined by T(u)=vxu is a linear transformation. b)Find the range of this linear transformation. Thanx
3. Linear Algebra

Prove that If a vector space is of dimension n and a set of vectors spans V, then that set of vectors must be linearly independent.
4. Linear Algebra

(1) Define T:R->R be a linear transformation such that T(x,y,z)= (2x,2y,2z) then the given value of T is A. 3 B. 2 C. 4 D. 6 (A) (B) (C) (D) (2) Let V and W be vector spaces over a field F, and let T:V-> W be a linear
5. Linear algebra

Find two vectors v and w such that the three vectors u = (1,-1,-1), v and w are linearly independent independent.
6. Algebra

Determine if the relationship represented in the table is linear. If it is linear, write an equation. x 2 5 7 10 12 20 y -3 0 2 5 7 15 A) Linear; y = x - -5 B) Linear; y = -5x C) Linear; y = x + -5 D) Not linear I'm thinking it's
7. linear algebra

Solve using the concept of rank. Is S={−16 −7 −21,2 1 3, 21 9 2} a linearly independent set of vectors in R3? So I know how to find out if this set is linearly indep. But, I don't know how to use row rank to find
8. math

If A^TA is an invertible matrix, prove that the column vectors of A are linearly independent. You know that if statement X implies statement Y then that is equivalent to Not(Y) implies Not(X). You can start by taking the column
9. Math: Linear Algebra

Let T1: P1 -> P2 be the linear transformation defined by: T1(c0 + c1*x) = 2c0 - 3c1*x Using the standard bases, B = {1, x} and B' = {1, x, x^2}, what is the transformation matrix [T1]B',B T(c0 + c1*x) = 2c0 - 3c1*x ---> T(1)
10. Ross

Hello, can anyone give me some help with these excersises? 1. Give an example of a linear transformation that is injective but not surjective 2. Give an example of a linear transformation which kernel is not only the indentity

More Similar Questions