math

A light is at the top of a pole 80 feet high. A ball is dropped at the same
height from a point 20 feet away from the light. A wall 80 feet high, 60 feet
away from the light is built. Assuming the ball falls according to the
Newtonian Law 2 s=16(t^2) where s is the distance in feet and t is the time in
seconds, find:
a) how fast the shadow of the ball is moving on the wall after 1 second.
b) how fast the shadow is moving along the ground after 2 seconds.

  1. 👍
  2. 👎
  3. 👁
  1. a. -100

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    A street light is at the top of a 17 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of 6 ft/sec along a straight path. How fast is her shadow lengthening when she is 30 ft from the base of the pole?

  2. Trigonometry

    A vertical pole 40 feet tall stands on a hillside that makes an angle of 17 degrees with the horizontal. Approximate the minimum length of cable that will reach the top of the pole from a point on the hillside 72 feet downhill

  3. algebra

    A wire to be attached to support a telephone pole. Because of surrounding buildings, sidewalks and roadways, the wire must be anchored exactly 21 feet from the base of the pole. Telephone company workers have only 28 feet of

  4. Math

    a light shines from the top of a pole 50ft high. a ball is dropped from the same height from a point 30 ft away from the light. how fast is the ball's shadow moving along the ground 1/2 sec later? (assume the ball falls at a

  1. Math

    1. To find the height of a pole, a surveyor moves 120 feet away from the base of the pole and then, with a transit 8 feet tall, measure the angle of elevation to the top of the pole to be 36*. to the nearest foot, what is the

  2. College Algebra

    Flight of a Ball If a ball is thrown upward at 96 feet per second from the top of a building that is 100 feet high, the height of the ball can be modeled by S(t)=100 + 96t -16t^2 feet, where t is the number of seconds after the

  3. math

    a ball is thrown upward at 64 feet per second from the top of an 80 feet high building. The height of the ball can be modeled by S(t) = -16t^2 + 64t + 80(feet), where t is the number of seconds after the ball is thrown. describe

  4. math

    A street light is at the top of a 14 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of 7 ft/sec along a straight path. How fast is the tip of her shadow moving when she is 30 ft from the base of the pole?

  1. Algebra

    Scott set up a volleyball net in his backyard. one of the poles, which forms a right angle with the ground, is 6 feet high. To secure the pole, he attached a rope from the top of the pole to a stake 8 feet from the bottom of the

  2. calc

    A light is at the top of a pole 80ft high. A ball is dropped at the same height from a point 20ft from the light. If the ball falls according to 2=16t^2, how fast is the shadow of the ball moving along the ground 1 second later?

  3. trigonometry

    Solution of problem:from the top of a building 55 ft high, the angle of elevation of the top of a vertical pole is 12 degrees, At the bottom of the building, the angle of elevation of the top of the pole is 24 degrees. find the

  4. Calculus

    A street light is at the top of a 19 foot tall pole. A 6 foot tall woman walks away from the pole with a speed of 7 ft/sec along a straight path. How fast is the tip of her shadow moving when she is 30 feet from the base of the

You can view more similar questions or ask a new question.