Math
 👍
 👎
 👁

 👍
 👎
Respond to this Question
Similar Questions

Probability
We have k coins. The probability of Heads is the same for each coin and is the realized value q of a random variable Q that is uniformly distributed on [0,1]. We assume that conditioned on Q=q, all coin tosses are independent. Let

Probability
A defective coin minting machine produces coins whose probability of Heads is a random variable Q with PDF fQ(q)={3q2,0,if q∈[0,1],otherwise. A coin produced by this machine is tossed repeatedly, with successive tosses assumed

probability
Let È be the bias of a coin, i.e., the probability of Heads at each toss. We assume that È is uniformly distributed on [0,1]. Let K be the number of Heads in 9 independent tosses. By performing some fancy and very precise

Math
A defective coin minting machine produces coins whose probability of Heads is a random variable Q with PDF fQ(q)={5q4,0,if q∈[0,1],otherwise. A coin produced by this machine is tossed repeatedly, with successive tosses assumed

Probability
We have a red coin, for which P(Heads)=0.4, a green coin, for which P(Heads)=0.5 and a yellow coin for which P(Heads)=0.6. The flips of the same or of different coins are independent. For each of the following situations,

Probability
Alice has two coins. The probability of Heads for the first coin is 1/3, and the probability of Heads for the second is 2/3. Other than this difference, the coins are indistinguishable. Alice chooses one of the coins at random and

math
a student claims that if a fair coin is tossed and comes up heads 5 times in a row, then according to the law of averages the probability of tails on the next toss is greater than the probability of heads. What is your reply?

science
If you toss a coin five times and it lands heads up each time, can you expect the coin to land heads up on the sixth toss? Explain. Please help! Thanks!

Math
A biased coin lands heads with probabilty 2/3. The coin is tossed 3 times a) Given that there was at least one head in the three tosses, what is the probability that there were at least two heads? b) use your answer in a) to find

Probability and statistics
In a game you flip a coin twice, and record the number of heads that occur. You get 10 points for 2 heads, zero points for 1 head, and 5 points for no heads. What is the expected value for the number of points you’ll win per

Probability
We have two coins, A and B. For each toss of coin A, we obtain Heads with probability 1/2; for each toss of coin B, we obtain Heads with probability 1/3. All tosses of the same coin are independent. We select a coin at random,

Algebra Probability
A coin is tossed twice. What is the probability of tossing heads, and then tails, given that the coin has already shown heads in the first toss?
You can view more similar questions or ask a new question.