if a=5-2\sqrt{6} then find the value of a^2+\frac{1}{a^2}

a = 5-2√6

a^2 = 49-20√6
1/a^2 = 49+20√6

Now just add up a^2 + 1/a^2

To find the value of \(a^2 + \frac{1}{a^2}\), let's first simplify the expression for \(a\).

Given: \(a = 5 - 2\sqrt{6}\)

We want to express \(a\) in a simple form without any radicals, so let's try squaring both sides of the equation:

\[a^2 = (5 - 2\sqrt{6})^2\]

Expanding the equation on the right side:

\[a^2 = (5 - 2\sqrt{6})(5 - 2\sqrt{6})\]

Using the FOIL method to multiply the terms:

\[a^2 = 25 - 10\sqrt{6} - 10\sqrt{6} + 24\]

Combining like terms:

\[a^2 = 49 - 20\sqrt{6}\]

Now, let's find \(\frac{1}{a^2}\):

\[\frac{1}{a^2} = \frac{1}{49 - 20\sqrt{6}}\]

To rationalize the denominator, we'll multiply both the numerator and denominator by the conjugate of the denominator:

\[\frac{1}{a^2} = \frac{1}{49 - 20\sqrt{6}} \cdot \frac{49 + 20\sqrt{6}}{49 + 20\sqrt{6}}\]

Simplifying the numerator and denominator:

\[\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{49^2 - (20\sqrt{6})^2}\]

Simplifying further:

\[\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{2401 - 720}\]
\[\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{1681}\]
\[\frac{1}{a^2} = \frac{7 + 4\sqrt{6}}{841}\]

Now, substituting the values back into the expression \(a^2 + \frac{1}{a^2}\):

\[a^2 + \frac{1}{a^2} = (49 - 20\sqrt{6}) + \frac{7 + 4\sqrt{6}}{841}\]

To simplify further, we'll combine the like terms:

\[a^2 + \frac{1}{a^2} = 49 - 20\sqrt{6} + \frac{7}{841} + \frac{4\sqrt{6}}{841}\]

Thus, the value of \(a^2 + \frac{1}{a^2}\) is \(49 - 20\sqrt{6} + \frac{7}{841} + \frac{4\sqrt{6}}{841}\).

To find the value of \(a^2 + \frac{1}{a^2}\), we need to substitute the value of \(a\) into the expression.

Given: \(a = 5 - 2\sqrt{6}\).

First, let's find the square of \(a\).
\[
a^2 = (5 - 2\sqrt{6})^2
\]

Expanding the equation using the distributive property, we have:
\[
a^2 = (5 - 2\sqrt{6}) \cdot (5 - 2\sqrt{6})
\]

Using the FOIL method, we get:
\[
a^2 = 5 \cdot 5 + 5 \cdot (-2\sqrt{6}) + (-2\sqrt{6}) \cdot 5 + (-2\sqrt{6}) \cdot (-2\sqrt{6})
\]

Simplifying further, we have:
\[
a^2 = 25 - 10\sqrt{6} - 10\sqrt{6} + 24
\]

Combining like terms, we get:
\[
a^2 = 49 - 20\sqrt{6}
\]

Now, let's find \(\frac{1}{a^2}\).
\[
\frac{1}{a^2} = \frac{1}{49 - 20\sqrt{6}}
\]

To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \(49 + 20\sqrt{6}\).
\[
\frac{1}{a^2} = \frac{1}{49 - 20\sqrt{6}} \cdot \frac{49 + 20\sqrt{6}}{49 + 20\sqrt{6}}
\]

Multiplying the numerator and denominator, we have:
\[
\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{49^2 - (20\sqrt{6})^2}
\]

Simplifying further, we get:
\[
\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{2401 - 720}
\]

Simplifying the denominator, we have:
\[
\frac{1}{a^2} = \frac{49 + 20\sqrt{6}}{1681}
\]

Now, let's substitute the values of \(a^2\) and \(\frac{1}{a^2}\) into the expression:
\[
a^2 + \frac{1}{a^2} = (49 - 20\sqrt{6}) + \frac{49 + 20\sqrt{6}}{1681}
\]

Combining like terms, we have:
\[
a^2 + \frac{1}{a^2} = 49 - 20\sqrt{6} + \frac{49 + 20\sqrt{6}}{1681}
\]

Simplifying further, we get:
\[
a^2 + \frac{1}{a^2} = 49 - 20\sqrt{6} + \frac{49}{1681} + \frac{20\sqrt{6}}{1681}
\]

Finally, simplifying the expression, we have:
\[
a^2 + \frac{1}{a^2} = 49 - 20\sqrt{6} + \frac{49}{1681} + \frac{20\sqrt{6}}{1681}
\]