Calculus

A base of a solid is the region bounded by y=e^-x, the x axis, the y axis, and the line x=2. Each cross section perpendicular to the x-axis is a square Find the volume of the solid

  1. 👍 0
  2. 👎 0
  3. 👁 393
  1. So, each square has base and height e^-x

    Thus, the volume, adding up all those thin squares, is

    ∫[0,2] (e^-x)^2 dx
    = ∫[0,2] e^(-2x) dx
    let u = 2x, and that becomes
    (1/2)∫[0,4] e^-u du
    ...

    1. 👍 0
    2. 👎 0
  2. so would it be 1/2(1-(1/e^4))

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    Consider the solid obtained by rotating the region bounded by the given curves about the x-axis. y = 9 - 9x^2 , y = 0 Find the volume V of this solid. Sketch the region, the solid, and a typical disk or washer. Any help or tips

  2. Calculus (Volume of Solids)

    A solid has, as its base, the circular region in the xy-plane bounded by the graph of x^2 + y^2 = 4. Find the volume of the solid if every cross section by a plane perpendicular to the x-axis is a quarter circle with one of its

  3. math

    The base of a solid is the region bounded by the parabola x^2 = 8y and y=4. Each cross section perpendicular to the y-axis is an equilateral triangle. Find the volume.

  4. calculus

    Find the volume of the solid generated by revolving the region about the given line. The region in the second quadrant bounded above by the curve y = 16 - x2, below by the x-axis, and on the right by the y-axis, about the line x =

  1. Calculus

    The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x^2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid? So I

  2. Calculus

    a) Find the volume formed by rotating the region enclosed by x = 6y and y^3 = x with y greater than, equal to 0 about the y-axis. b) Find the volume of the solid obtained by rotating the region bounded by y = 4x^2, x = 1, and y =

  3. calculus

    Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y=x^2, y = 0, x = 0, x = 3, about the y-axis

  4. calculus review please help!

    1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate,

  1. CALCULUS

    The region R is bounded by the x-axis, y-axis, x = 3 and y = 1/(sqrt(x+1)) A. Find the area of region R. B. Find the volume of the solid formed when the region R is revolved about the x-axis. C. The solid formed in part B is

  2. Calculus

    The base of a solid is bounded by the curve y=√ x + 1, the x-axis and the line x = 1. The cross sections, taken perpendicular to the x-axis, are squares. Find the volume of the solid.

  3. Calculus

    a solid has as its base the region bounded by the curves y = -2x^2 +2 and y = -x^2 +1. Find the volume of the solid if every cross section of a plane perpendicular to the x-axis is a trapezoid with lower base in the xy-plane,

  4. Calculus II

    Consider the solid obtained by rotating the region bounded by the given curves about the y-axis. y = ln x, y = 4, y = 5, x = 0 Find the volume V of this solid. Help!!! Thank you in advance :(

You can view more similar questions or ask a new question.