Calculus
 👍
 👎
 👁

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

Math
How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x  2tanxsinx=0 tanx(tanx  2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX

math;)
The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

Trig.......
I need to prove that the following is true. Thanks (2tanx /1tan^x)+(1/2cos^2x1)= (cosx+sinx)/(cosx  sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

trigonometry
how do i simplify (secx  cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx)  (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx)  (cos x / sinx) after that i get stuck

PreCalc
Establish the identity. sinx + cosx/sinx  cosx = 1+2sinxcosx/2sin^2x1

Maths
If is a n acute angle and tanx=3 4 evaluate cosxsinx cosx+sinx

Math
(sinx  cosx)(sinx + cosx) = 2sin^2x 1 I need some tips on trigonometric identities. Why shouldn't I just turn (sinx + cosx) into 1 and would it still have the same identity?

Math
1) evaluate without a calculator: a)sin(3.14/4) b) cos(3(3.14)/4) c) tan(4(3.14)/3) d) arccos( square root of three/2) e) csctheata=2 2) verify the following identities: a) cotxcosx+sinx=cscx b)[(1+sinx)/ cosx] + [cosx/

Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't

Trigonometry
Simplify #1: cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer cscxtanx/sinx+cosx? Simplify #2: sin2x/1+cos2X = ??? I'm stuck on this one. I don't know what I should do.

Trig Identities
Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /

Math help again
cos(3π/4+x) + sin (3π/4 x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx  cos(3π/4)sinx = 1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx  (1/sqrt2sinx) I canceled out 1/sqrt2cosx and 1/sqrt2cosx Now I have 1/sqrt sinx +
You can view more similar questions or ask a new question.