Mathematics

An open box is made from a square piece of sheet metal 19 inches on a side by cutting identical squares from the corners and turning up the sides. Express the volume of the box, V, as a function of the length of the side of the square cut from each corner, x.
A. V(x) = 361x
B. V(x) = (19 - 2x)2
C. V(x) = x(19 - 2x)
D. V(x) = x(19 - 2x)2

  1. 👍
  2. 👎
  3. 👁
  1. new length and width = 19-2x

    area of base = (19-2x)^2
    height = x
    so
    V = x (19-2x)^2

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    An open box of maximum volume is to be made from a square piece of cardboard, 24 inches on each side, by cutting equal squares from the corners and turning up the sides to make the box. (a) Express the volume V of the box as a

  2. Calculus

    An open box is formed from a piece of cardboard 12 inches square by cutting equal squares out of the corners and turning up the sides, find the dimensions of the largest box that can be made in this way.

  3. Calculus

    An OPEN box has a square base and a volume of 108 cubic inches and is constructed from a tin sheet. Find the dimensions of the box, assuming a minimum amount of material is used in it's construction. HINT: the goal is to minimize

  4. Calculus

    A box with an open top is to be made from a square piece of cardboard by cutting equal squares from the corners and turning up the sides. If the piece of cardboard measures 12 cm on the side, find the size of the squares that must

  1. calculus

    an open box is to be made from a piece of metal 16 by 30 inches by cutting out squares of equal size from the corners and bending up the sides. what size should be cut out to create a box with the greatest volume? what is the

  2. math

    An open box is to be made from a rectangular piece of tin 12 inches long and 10 inches wide by cutting pieces of x-inch square from each corner and bonding up the sides. find the formula that expresses the volume of the box as a

  3. Calculus

    An open top box with a square base is to have a volume of exactly 500 cubic inches. Find the dimensions of the box that can be made with the smallest amount of materials.

  4. Calculus

    An open box is made by cutting squares of side w inches from the four corners of a sheet of cardboard that is 24" x 32" and then folding up the sides. What should w be to maximize volume of the box? I started by trying to get a

  1. Math

    An open box is to be made from a square piece of material by cutting four-centimeter squares from each corner and turning up the sides (see figure). The volume of the finished box is to be 144 cubic centimeters. Find the size of

  2. Calculus (Optimization)

    A rectangular piece of cardboard, 8 inches by 14 inches, is used to make an open top box by cutting out a small square from each corner and bending up the sides. What size square should be cut from each corner for the box to have

  3. Math

    An open gift box is to be made from a square piece of material by cutting four-centimeter squares from each corner and turning up the sides (see figure). The volume of the finished gift box is to be 324 cubic centimeters. Find the

  4. Calculus

    I actually have two questions: 4. An open box is to be made from a rectangular piece of material 3m by 2m by cutting a congruent square from each corner and folding up the sides. What are the dimensions of the box of the largest

You can view more similar questions or ask a new question.