# math

Given that sin x + sin y = a and cos x + cos y =a, where a not equal to 0, express sin x + cos x in terms of a.

attemp:
sin x = a - sin y
cos x = a - cos y
sin x + cos x = 2A - (sin y + cos y)

1. 👍
2. 👎
3. 👁
1. so sinx + siny = cosx + cosy
the trivial and obvious solution is x = y = 45° or π/4

another obvious one is 225° or 5π/4, because of the CAST rule

are there others , not multiples of 45°

recall:

sin a + sin b = 2 sin (1/2)(a+b) cos (1/2)(a-b)
cos a + cos b = 2 cos (1/2)(a+b) cos (1/2)(a-b)

so:
sinx + siny = 2 sin (1/2)(x+y) cos (1/2)(x-y)
cosx + cosy = 2 cos (1/2)(x+y) cos (1/2)(x-y)

2 sin (1/2)(x+y) cos (1/2)(x-y) = 2 cos (1/2)(x+y) cos (1/2)(x-y)
divide both sides by 2cos (1/2)(x-y)
sin (1/2)(x+y) = cos (1/2)(x+y)
divide by cos (1/2)(x+y)

tan (1/2)(x+y) = 1
we know tan 45° = 1
(1/2)(x+y) = 45
x+y = 90

so any pair of complimentary angles will work
e.g let x = 10°, y = 80°
LS = sin10° + sin80°
= cos80° + sin10
= RS

of course, I should have seen the property that
cosØ = sin(90°- Ø)

then sinx + siny = sin(90-x) + sin(90-y)
sinx + siny = sin90cosx - cos90sinx + sin90cosy - cos90siny
sinx + siny = (1)cosx - (0)sinx + (1)cosy - (0)siny
sinx + siny = cosx + cosx

back to the beginning

1. 👍
2. 👎

Question asked: express sinx + cosx in term of a.

1. 👍
2. 👎

## Similar Questions

1. ### math

Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t) - cos(t) + C s(t) = -cos(t) - sin(t) + Cx + D

2. ### Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) -

3. ### calculus

Find complete length of curve r=a sin^3(theta/3). I have gone thus- (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

4. ### Pre-Cal (Trig) Help?

The following relationship is known to be true for two angles A and B: cos(A)cos(B)-sin(A)sin(B)=0.957269 Express A in terms of the angle B. Work in degrees and report numeric values accurate to 2 decimal places. So I'm pretty

1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

2. ### calculus

Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(-sin x) - (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

3. ### trig

The expression 4 sin x cos x is equivalent to which of the following? (Note: sin (x+y) = sin x cos y + cos x sin y) F. 2 sin 2x G. 2 cos 2x H. 2 sin 4x J. 8 sin 2x K. 8 cos 2x Can someone please explain how to do this problem to

4. ### Integration by Parts

integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be -pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=-cos(t) i integral sin(t)e^(it)dt= -e^(it)cos(t)+i*integral

1. ### math

Proving Trigonometric Identities 1. sec^2x + csc^2x= (sec^2 x)(csc^2 x) 2. sin ^3 x / sin x - cos 3x / cos x = 2 3. 1- cos x/ sin x= sin x/ 1+ cos x 4. 2 sin x cos ^2 (x/2)- 1/x sin (2x) = sinx 5. cos 2 x + sin x/ 1- sin x= 1+ 2