# Trigonometry

Sinx+root3cos=1 if 0<=x<360

1. 👍
2. 👎
3. 👁
1. Root3cosx nt root3cos

1. 👍
2. 👎
2. If you meant

sinx + √3 cosx = 1
then try this
√3 cosx = 1-sinx
3cos^2x = 1-2sinx+sin^2x
3(1-sin^2x) = 1-2sinx+sin^2x
4sin^2x - 2sinx - 2 = 0
2(2sinx+1)(sinx-1) = 0
sinx = -1/2 or 1
x = 90 or 210 or 330
But 210 does not work in the original equation, so throw it out.

1. 👍
2. 👎
3. sinx+1.732cosx=1
2(sinx(1/2)+(1.732/2)cosx)=1
sin(x+pi/3)=1/2
x+pi/3=5pi/6
x=3pi/2

1. 👍
2. 👎

## Similar Questions

1. ### calculus

Find the general solution of this de (1+cosx)y'=sinx(sinx+sinxcosx-y) I need full step have tried but nothing good is coming out

2. ### trigonometry

how do i simplify (secx - cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx) - (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx) - (cos x / sinx) after that i get stuck

3. ### math;)

The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

4. ### Math

How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x - 2tanxsinx=0 tanx(tanx - 2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX

1. ### Calculus

determine the absolute extreme values of the function f(x)=sinx-cosx+6 on the interval 0

2. ### Trig

Verify the identity: tanx(cos2x) = sin2x - tanx Left Side = (sinx/cosx)(2cos^2 x -1) =sinx(2cos^2 x - 1)/cosx Right Side = 2sinx cosx - sinx/cosx =(2sinxcos^2 x - sinx)/cosx =sinx(2cos^2 x -1)/cosx = L.S. Q.E.D.

3. ### Math

(sinx - cosx)(sinx + cosx) = 2sin^2x -1 I need some tips on trigonometric identities. Why shouldn't I just turn (sinx + cosx) into 1 and would it still have the same identity?

4. ### math

lim x->0 sinx secx / x use the fact that the limit as x approaches 1 of (sinx / x) = 1

1. ### Math

1) evaluate without a calculator: a)sin(3.14/4) b) cos(-3(3.14)/4) c) tan(4(3.14)/3) d) arccos(- square root of three/2) e) csctheata=2 2) verify the following identities: a) cotxcosx+sinx=cscx b)[(1+sinx)/ cosx] + [cosx/

2. ### Math help again

cos(3π/4+x) + sin (3π/4 -x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx - cos(3π/4)sinx = -1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx - (-1/sqrt2sinx) I canceled out -1/sqrt2cosx and 1/sqrt2cosx Now I have 1/sqrt sinx +

3. ### Trigonometry.

( tanx/1-cotx )+ (cotx/1-tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated

4. ### Calculus

Q: If y=sinx/(1+tanx), find value of x not greater than pi, corresponding to maxima or minima value of y. I have proceeded thus- Equating dy/dx=0 we get{ (1+tanx)cosx-sinx.sec^2 x}/(1+tanx)^2=0……..(A) Or cosx+sinx=sinx.sec^2 x